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What is mechanics and its application in Engineering science?

INTRODUCTION

♠ Mechanics is the physical science which deals with the effects of forces 
on objects. It is divided into three parts: mechanics of rigid bodies, 
mechanics of deformable bodies, and mechanics of fluids.

♠ It is the oldest of the physical sciences. The early history of this subject 
is synonymous with the very beginnings of engineering.  

♠ No other subject plays a greater role in engineering analysis than 
mechanics. Although the principles of mechanics are few, they have 
wide application in engineering. [1] 

♠ The subject of mechanics is logically divided into two parts: statics,
which concerns the equilibrium of bodies under action of forces, and
dynamics, which concerns the motion of bodies. Engineering Mechanics 
is divided into these two parts, Vol. 1 Statics and Vol. 2 Dynamics 

♠ Statics deals primarily with the calculation of external forces which act 
on rigid bodies in equilibrium. Determination of the internal 
deformations belongs to the study of the mechanics of deformable 
bodies or mechanics of materials.
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Basic Concepts
INTRODUCTION…

♠ Space is the geometric region occupied by bodies whose positions are 
described by linear and angular measurements relative to a coordinate 
system. For 3D problems, three independent coordinates are needed. For 
2D problems, only two coordinates are required.

♠ Time is the measure of the succession of events and is a basic quantity in 
dynamics. Time is not directly involved in the analysis of statics problems.

♠ Mass is a measure of the inertia of a body, which is its resistance to a 
change of velocity. Mass can also be thought of as the quantity of matter in 
a body. 

♠ Force is the action of one body on another. A force tends to move a body in the 
direction of its action. The action of a force is characterized by its magnitude, by 
the direction of its action, and by its point of application. Thus force is a vector 
quantity, and its properties are discussed in detail in next session. 

♠ A particle is a body of negligible dimensions. In the mathematical sense, a 
particle is a body whose dimensions are considered to be near zero so that we 
may analyze it as a mass concentrated at a point. We often choose a particle as a 
differential element of a body. We may treat a body as a particle when its 
dimensions are irrelevant to the description of its position or the action of 
forces applied to it.

♠ Rigid body. A body is considered rigid when the change in distance between any 
two of its points is negligible for the purpose at hand.
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Fundamental Principles 

INTRODUCTION…

Newton’s Laws
Law I. A particle remains at rest or continues to move with uniform velocity (in a 
straight line with a constant speed) if there is no unbalanced force acting on it.
Law II. The acceleration of a particle is proportional to the vector sum of forces 
acting on it, and is in the direction of this vector sum.
Law III. The forces of action and reaction between interacting bodies are equal in 
magnitude, opposite in direction, and collinear (they lie on the same line). 

♠ The law of gravitation is expressed by the equation  
where 
F= the mutual force of attraction between two particles
G = a universal constant known as the constant of gravitation, 

6.673x10-11 m3/(kg *s2)
m1, m2 = the masses of the two particles
r =the distance between the centers of the particles

The mutual forces F obey the law of action and reaction, since they are
equal and opposite and are directed along the line joining the centers of
the particles.
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SCALARS AND VECTORS
♠ We use two kinds of quantities in mechanics—scalars and vectors.
 Scalars are physical quantities that can be completely described (measured) by their magnitude 

alone. These quantities do not need a direction to point out their application (Just a value to 
quantify their measurability). They only need the magnitude and the unit of measurement to 
fully describe them. Examples of scalar quantities are time(s), area(m2), volume(m3), 
mass(kg),density(kg/m3), speed(m/s), and energy(Wat) 

♠ Vector quantities, on the other hand, possess direction as well as magnitude with its unit.      
E.g.:-displacement(m), velocity(m/s), acceleration(m/s2), force(N, kg.m/s2), moment(N.m), and 
momentum(N.s, kg.m/s). 

♠ When writing vector equations, always be certain to preserve the mathematical distinction 
between vectors and scalars. In handwritten work, use a distinguishing mark for each vector 
quantity, such as an underline, V, or an arrow over the symbol, V , to take the place of boldface 
type in print.

y

x

Position vector is a vector that locates a given 
point in reference to origin(point of interest).
• Let AB is a vector with initial point (x1,y1) and 

terminal point B(x2,y2) then its position 
vector is AB=(x2-x1, y2-y1)= (x2-x1,)i + (y2-y1)j

• Position vector whose initial point is 
origin(0,0) and terminal point is (x2-x1, y2-y1) 
This vector is       V=(x2-x1,)i + (y2-y1)j

• Any vector whose magnitude is unity is called 
unit vector. Generally for any vector V its 
unit vector is determined by dividing this 
vector by its magnitude. i.e

nV=V/(/V/)

A - B
V

A(x1,y1)

B(x2,y2)

AB

B

A
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SCALARS AND VECTORS

♠ Vectors representing physical quantities can be classified as free, 
sliding, or fixed. 

♠ A free vector is one whose action is not confined to or associated with 
a unique line in space. we may represent the displacement of a body by 
a free vector. 

♠ A sliding vector has a unique line of action in space but not a unique 
point of application. For example, when an external force acts on a 
rigid body, the force can be applied at any point along its line of action 
without changing its effect on the body as a whole,* and thus it is a 
sliding vector.

♠ A fixed vector is one for which a unique point of application is 
specified. The action of a force on a deformable or nonrigid body must 
be specified by a fixed vector at the point of application of the force. In 
this instance the forces and deformations within the body depend on 
the point of application of the force, as well as on its magnitude and 
line of action.
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SCALARS AND VECTORS

♠ Vectors must obey the parallelogram law of combination. This law states that two 
vectors V1 and V2, treated as free vectors, Fig. 1/2a, may be replaced by their 
equivalent vector V, which is the diagonal of the parallelogram formed by V1 and 
V2 as its two sides, as seen in Fig. 1/2b.This combination is called the vector sum, 
and is represented by the vector equation,

The magnitude of 
vector V calculated by the law of cosines as follows:

/V/2=/V1/2 + /V2/2 – 2*/V1/*/V2/*cos(180-θ) θ= angle between V1 & V2 when 
joined tail to tail as in Fig. 1/2b. 
♠ The two vectors V1 and V2, again treated as free vectors, may also be
added head-to-tail by the triangle law, as shown in Fig. 1/2c, to obtain the identical 
vector sum V. Knowing θ, α and magnitudes of given vectors,/V1/ and/V2/ then the 
magnitude of Vector V, /V/ determined by using the law of sines as follows

Operation with Vectors
i) Resultant of vectors

θ
α

β
𝟏 = 𝟐 =
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SCALARS AND VECTORS

♠ The difference V1 - V2 between the two vectors is easily obtained
by adding -V2 to V1 as shown in Fig. 1/3, where either the triangle or
parallelogram procedure may be used. The difference V` between the
two vectors is expressed by the vector equation

where the minus sign denotes vector subtraction. 

Any two or more vectors whose sum 
equals a certain vector V are said to be the 
components of that vector. Thus, the 
vectors V1 and V2 in Fig. 1/4a are the 
components of V in the directions 1 and 2, 
respectively. It is usually most convenient 
to deal with vector components which are 
mutually perpendicular; these are called 
rectangular components. The process of 
representing a vector by its component  is 
called resolving a vector.

Operation with Vectors …

ii) Decomposition of a vector into its 
component for a given coordinate system
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SCALARS AND VECTORS

♠ vectors Vx and Vy in Fig. 1/4b are the x- and y-components, 
respectively, of V. When expressed in rectangular 
components, the direction of the vector with respect to, 
say, the x-axis is clearly specified by the angle ɵ, where 

Operation with Vectors …

In many problems, particularly three-dimensional 
ones, it is convenient to express the rectangular 
components of V, Fig. 1/5, in terms of unit 
vectors i, j, and k, which are vectors in the x-, y-, 
and z-directions, respectively, with unit 
magnitudes. Because the vector V is the vector 
sum of the components in the x-, y-, and z-
directions, we can express V as follows:
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SCALARS AND VECTORS

Dot Product

Vector Multiplication: Dot & Cross

If U and V are non-zero 
vectors the angle between 
them can be calculated by:

11
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SCALARS AND VECTORS

Cross Product
This vector multiplication is important in calculating moment of a force 
about an arbitrary point O. Let r is a position vector to the point of 
application of the force at A. That means r=OA =rx i+ ry j + rz k
If the force is written in the form of vector i.e F=Fx i+ Fy j + Fz k
Then the moment about O is the cross product of position vector and force 
vector, i.e Mo=r X F
 Cross product is not commutative i.e rXF=- FXr

Vector Multiplication: Dot & Cross

𝒐 𝐱 𝐲 𝐳

𝐱 𝐲 𝐳
Mo=(ry*Fz-rz*Fy)i –(rx*Fz - rz*Fx)j + (rx*Fy - ry*Fx)k

Mo =Mx i+ Myj + Mz k  

Where Mx , My ,& Mz ,are the scalar component of the 
moment. The norm or magnitude of the moment can be 
calculated by as follows: 𝟐

𝒙
𝟐
𝒚

𝟐
𝒛
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1. a) Determine the magnitude of the vector sum V=V1 +V2 and the 
angle θx which V makes with the positive x-axis. 
b) write V as a vector in terms of the unit vectors i and j
c) Determine the unit vector of V.
d) determine the magnitude of the vector difference V`=V2 - V1 

and the angle θx which V` makes with the positive x-axis. 

Exercise

SCALARS AND VECTORS 13
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1. a) Required: V=V1 +V2 and the angle θx which V makes with +ve x-axis. 

Solution
SCALARS AND VECTORS 14

83.1ᶱ
α

36.9ᶱ
x

y

1. Using Parallelogram law of vector addition  see figure above, 
The diagonal drawn is the vector sum, V=V1 +V2 . 
• Take Triangle OAB. Magnitude of V, obtained  by Using law of cosines   

/V/2= /V1 /2+/V2/2 - 2/V1/ */V2/cos(96.9ᶱ) 
/V/2= 102+122 – 2*10 *12*cos(96.9ᶱ) , /V/=16.52 units…Answer

Then using law of sine       /𝑽/

𝑺𝒊𝒏(𝟗𝟔.𝟗)
= /𝑽𝟐/

𝑺𝒊𝒏(𝜶)
w/c  is 𝟏𝟔.𝟓𝟐

𝑺𝒊𝒏(𝟗𝟔.𝟗)
= 𝟏𝟐

𝑺𝒊𝒏(𝜶)

Solving α, α=46.1 Thus  θx=46.1+36.9=83ᶱ from positive x-axis …Answer

Given:

Angle analysis
 The angle which V1 makes  with +ve x-

axis=tan-1(3/4)=36.9ᶱ
 The angle b/n V1 and V2 

=120 - 36.9=83.1ᶱ AND 
 β=180-83.1=96.9ᶱ

O

B

A
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1. b) Required: Vector V in terms of i and j
V=16.52*[cos(83) i+ cos(90-83) j]
=2 i    + 16.34 j   (units)…Ans.

c) unit vector of V, nV= [2 i  + 16.34 j]/16.52 
= 0.12 i  + 0.99 j  ….Answer

Solution
SCALARS AND VECTORS 15
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d) Required: V`=V2 - V1 See the diagrammatic representation shown below.

Solution
SCALARS AND VECTORS 16

36.9ᶱ

83.1ᶱ

α x

y

 Take Triangle OAB, Using law of cosines of triangles
i.e /V`/2= /V1 /2+/V2/2 - 2/V1/ */V2/cos(83.1ᶱ) 

/V`/2= 102+122 – 2*10 *12*cos(83.1ᶱ) , /V`/=14.67 units…Answer

 Then using law of sine       = w/c = α=54.3ᶱ

Thus  θx from negative x-axis=54.3 - 36.9=17.4ᶱ
θx from Positive x-axis=180-17.4=162.6ᶱ ….Answer

O

B

A
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2. FORCE SYSTEMS

♠ Studying the effects of forces on structures is 
important in the study of mechanics and in other 
subjects such as stress analysis, design of structures 
and machines, and fluid flow.

♠ A force as an action of one body on another. 
♠ In dynamics we will see that a force is defined as an 

action which tends to cause acceleration of a body. 
♠ A force is a vector quantity, because its effect 

depends on the direction as well as on the magnitude 
of the action. Thus, forces may be combined 
according to the parallelogram law of vector addition.

Introduction

17
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2. FORCE SYSTEMS…

♠ Changing any one of these three 
specifications will alter the effect on the 
bracket, such as the force in one of the 
bolts which secure the bracket to the base, 
or the internal force and deformation in the 
material of the bracket at any point. Thus, 
the complete specification of the action of 
a force must include its magnitude, 
direction, and point of application, and 
therefore we must treat it as a fixed vector.

Introduction…
♠ The action of the cable tension on the bracket in Fig. 2/1a is 

represented in the side view, Fig. 2/1b, by the force vector P of 
magnitude /P/. The effect of this action on the bracket depends 
on /P/, the angle Ɵ, and the location of the point of application A. 
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• External effects          
Due to external applied 
force on an object, there 
will be a reaction force to 
be developed from the 
contacting surface.
Thus force external to 
the body are:

♠ Applied forces 
♠ Reactive forces 

(support reaction 
force).

• Internal effects          
• The effects of a force 

internal to a given body 
are:

 internal forces (Axial 
and shear stress, 
moments) and

deformations or 
deflections (strain)

19
Introduction…

External and Internal Effects of forces
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2. FORCE SYSTEMS…
Introduction…

Principle of Transmissibility
♠ For example, the force P acting on the rigid plate in Fig. 2/2 may 

be applied at A or at B or at any other point on its line of action, 
and the net external effects of P on the bracket will not change. 
The external effects are the force exerted on the plate by the 
bearing support at O and the force exerted on the plate by the 
roller support at C.

♠ This conclusion is summarized by the principle of transmissibility, which 
states that a force may be applied at any point on its given line of 
action without altering the resultant effects of the force external to 
the rigid body on which it acts. 

20
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2. FORCE SYSTEMS…

Introduction…
Force Classification

♠ Forces are classified as either contact or body forces. 
♠ A contact force is produced by direct physical contact; an 

example is the force exerted on a body by a supporting 
surface. 

♠ A body force is generated by virtue of the position of a body 
within a force field such as a gravitational, electric, or 
magnetic field. E.g: Weight of a given object.

♠ Forces may be further classified as either
♠ concentrated forces or point load: 
♠ Distributed:

♠ Linearly distributed or line load
♠ Areally distributed 

21
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♠ A system of forces can be grouped into different categories depending on 
their arrangement in space. 

♠ Coplanar Forces:-are forces which act on the same plane.

♠ Depending on their arrangement on the plane too, coplanar forces 
can further be divided as: 

♠ Coplanar collinear forces:-are coplanar forces acting on the same line-collinear.

♠ Coplanar parallel forces:-Are forces which are on the same plane and 
parallel

♠ Coplanar concurrent forces:-Are forces on the same plane whose lines 
of action intersect at a point.

♠ General coplanar forces:

2. FORCE SYSTEMS…
Introduction
…

Two or more forces are said to be concurrent at a 
point if their lines of action intersect at that point.

22
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2. FORCE SYSTEMS…
SECTION A TWO-DIMENSIONAL FORCE SYSTEMS

Rectangular Components
♠ The most common two-dimensional resolution of a force vector is into 

rectangular components. It follows from the parallelogram rule that the 
vector F of Fig. 2/5 may be written as

where Fx and Fy are vector components of F in 
the x- and y-directions. Each of the two vector 
components may be written as a scalar times 
the appropriate unit vector. In terms of the unit vectors i 
and j of Fig. 2/5, Fx =Fxi and Fy =Fyj, and thus we may 
write

where the scalars Fx and Fy are the x and y scalar components of the vector F.
For the force vector of Fig. 2/5, the x and y scalar components are both 
positive and are related to the magnitude and direction of F by

23
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2. FORCE SYSTEMS…
Example

The forces F1, F2, and F3, all of which act on point A of the bracket, are 
specified in three different ways. Determine the x and y scalar components 
of each of the three forces and Compute the resultant force, R.

𝑭𝒙 = 𝟒𝟗𝟏 − 𝟒𝟎𝟎 + 𝟑𝟓𝟖 = 𝟒𝟒𝟗𝑵

 

 

𝑭𝒚 = 𝟑𝟒𝟒 + 𝟑𝟎𝟎 − 𝟕𝟏𝟔 = −𝟕𝟐𝑵

 

R=449 i-72 j (N)  ….Answer

24

Finally:-

Solution:
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2. FORCE SYSTEMS…
2D System …

Moment
♠ In addition to the tendency to move a body in the direction of its 

application, a force can also tend to rotate a body about an axis. The axis 
may be any line which neither intersects nor is parallel to the line of action 
of the force. This rotational tendency is known as the moment M of the 
force. Moment is also referred to as torque.

Moment about a Point
♠ When dealing with forces which all act in a given plane, we customarily speak of the 

moment about a point. By this we mean the moment with respect to an axis normal 
to the plane and passing through the point. Thus, the moment of force F about 
point A in Figure (d) has the magnitude M = Fd and is counterclockwise. 

♠ Moment directions may be accounted for by using a stated sign convention, such as 
a plus sign (+) for counterclockwise moments and a minus sign (-) for clockwise 
moments, or vice versa. 

25
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2. FORCE SYSTEMS…
2D System …

Moment Calculation by:
1) Moment arm rule: Moment is the scalar product of force magnitude with a distance 

which is perpendicular to the line of action of the force, i.e M=Fd
2)Vector Approach: Use of the Cross-Product M=rXF where r is Position vector 

locating the point of application of the force vector F. Where F is a force written in 
the form of vector. We establish the direction and sense of M by applying the right-
hand rule to the sequence rXF. If the fingers of the right hand are curled in the 
direction of rotation from the positive sense of r to the positive sense of F, then the 
thumb points in the positive sense of M.

26

Varignon’s Theorem
One of the most useful principles of mechanics is Varignon’s theorem, which states 
that the moment of a force about any point is equal to the sum of the moments of 
the components of the force about the same  point.

By Moment arm rule: 

By Vector approach: Using the 
distributive law for cross products, 
we have 
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2. FORCE SYSTEMS…
2D System …

Couple

♠ The moment produced by two equal, opposite, and noncollinear forces is 
called a couple. Couples have certain unique properties and have 
important applications in mechanics. 

♠ Here again, the moment expression contains no reference to the moment 
center O and, therefore, is the same for all moment centers. Thus, we may 
represent M by a free vector, as shown in Fig. 2/10c, where the direction 
of M is normal to the plane of the couple and the sense of M is established 
by the right-hand rule.

CCW CW

27
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2. FORCE SYSTEMS…
2D System …

Equivalent Couples
♠ Changing the values of F and d does not change a given couple as long as 

the product Fd remains the same. Likewise, a couple is not affected if the 
forces act in a different but parallel plane.

♠ Figure 2/11 shows four different configurations of the same couple M. In 
each of the four cases, the couples are equivalent and are described by the 
same free vector which represents the identical tendencies to rotate the 
bodies.

28
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2. FORCE SYSTEMS…
2D System …

Force-couple System
♠ The effect of a force acting on a body is the tendency to push or pull the 

body in the direction of the force, and to rotate the body about any fixed 
axis which does not intersect the line of the force. We can represent this 
dual effect more easily by replacing the given force by an equal parallel 
force and a couple to compensate for the change in the moment of the 
force.

♠ The replacement of a force by a force and a couple is illustrated in Fig. 
2/12, where the given force F acting at point A is replaced by an  equal 
force F at some point B and the counterclockwise couple M =F*d. The 
transfer is seen in the middle figure, where the equal and opposite forces 
F and -F are added at point B without introducing any net external 
effects on the body. The combination of the force and couple in the 
right-hand part of Fig. 2/12 is referred to as a force–couple system.

29

Mubarek Z



2. FORCE SYSTEMS…
2D System …

Force-couple System…
♠ By reversing this process, we can combine a given couple and a force 

which lies in the plane of the couple (normal to the couple vector) to 
produce a single, equivalent force. Replacement of a force by an 
equivalent force–couple system, and the reverse procedure, have many 
applications in mechanics and should be mastered

Example: Replace the horizontal 80-lb force acting on the lever by 
an equivalent system consisting of a force at O and a couple. 

We apply two equal and opposite 
80-lb forces at O and identify the
counterclockwise couple 

[M =F*d]; 
M = 80(9 sin 60) = 624 lb-in. 

30
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2. FORCE SYSTEMS…
2D Examples…

Force-coup System…
♠ The 30-N force P is applied perpendicular to the portion BC of the bent 

bar. Determine the moment of P about point B and about point A.

Solution:

MB=30*1.6=48 NM

MA=MB+M2
=48+33.94

=81.94 Nm CW

Py=30*sin(45)=21.21 N

MA=81.94 NM

21.21 N

21.21 N

P=30N

P=30N

31

Px=30*cos(45) 
=21.21N

M2=21.21N*1.6m
=33.94 Nm

MB=48 Nm
MA=81.94 Nm CW  
(Answer) 
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2. FORCE SYSTEMS…
2D Examples…

Force-coup System…
♠ The 30-N force P is applied perpendicular to the portion BC of the bent 

bar. Force-couple system at point A.

Solution: x=1.6*cos45=1.131 m

Py=30*sin(45)=21.21 N

MA=81.94 NM

21.21 N

21.21 N

32

Px=30*cos(45)=21.21N

MA=81.94 Nm CW  
(Answer) 

45
y

x

y=1.6*sin45=1.131 m

MPy=21.21*1.131=23.99 NmPy=21.21 N

Px=21.21N

45

MPX=21.21*(1.131+1.6)
=57.93 Nm

MA=MPy+MPX =81.94 Nm

Given:
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2. FORCE SYSTEMS…
2D Examples…

Solution: Alternative approach by calculating moment arm

Angle analysis:
Angle <ABC=180-45=135ᶱ and  α=?

33

Therefore β=90-α; β=90-22.5;  β=67.5˚
 d=/AC/*sin β=2.956*sin(67.5˚)=2.73m.
 Then by applying two equal but opposite 

forces of magnitude=30N at point A,
 As a result

• Couple, M=30*2.73=81.93 Nm (CW) and
• Force, P=30 N at 45˚ from horizontal line

Dimension Analysis:
 Using Cosine laws for the triangle ABC:
/AC/2=1.62 + 1.62 – 2*1.6*1.6*cos(135ᶱ), 
/AC/=2.956m and then Using sine law:


/𝑨𝑪/

𝑺𝒊𝒏(𝟏𝟑𝟓)
= /𝑨𝑩/

𝑺𝒊𝒏(𝜶)

𝟐.𝟗𝟓𝟔

𝑺𝒊𝒏(𝟏𝟑𝟓)
= 𝟏.𝟔

𝑺𝒊𝒏(𝜶)
; α=22.5ᶹ

P=30 N

P=30 N

A
.

1.6
 m

P=30 N

B

C

Given: diagram

P=30 N

A. 45˚ 

M=81.93 Nm (CW) (Answer)
Mubarek Z



2. FORCE SYSTEMS…
2D System …

Resultant
♠ Most problems in mechanics deal with a system of forces, and it is 

usually necessary to reduce the system to its simplest form to describe 
its action. The resultant of a system of forces is the simplest force 
combination which can replace the original forces without altering the 
external effect on the rigid body to which the forces are applied.

♠ Equilibrium of a body is the condition in which the resultant of all forces 
acting on the body is zero. This condition is studied in statics. When the 
resultant of all forces on a body is not zero, the acceleration of the body 
is obtained by equating the force resultant to the product of the mass 
and acceleration of the body. This condition is studied in dynamics. Thus, 
the  determination of resultants is basic to both statics and dynamics.

34
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2. FORCE SYSTEMS…
2D System …

Resultant…
♠ The most common type of force system occurs when the forces all act in a single 

plane, say, the x-y plane, as illustrated by the system of three forces F1, F2, and F3 in 
Fig. 2/13a. We obtain the magnitude and direction of the resultant force R by 
forming the force polygon shown in part b of the figure, where the forces are added 
head-to-tail in any  sequence. Thus, for any system of coplanar forces we may write

Graphically, the correct line of 
action of R may be obtained 
by preserving the correct lines 
of action of the forces and 
adding them by the
parallelogram law. The 
principle of transmissibility 
usually used in this process.

35
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2. FORCE SYSTEMS…
2D System …

Resultant…
Algebraic Method: the magnitude and direction of the resultant force (R) for 
the given force system by a vector summation of forces . The steps are:
1. Choose a convenient reference point and move all forces to that point. This process is 

depicted for a three-force system in Figs. 2/14a and b, where M1, M2, and M3 are the 
couples resulting from the transfer of forces F1, F2, and F3 from their respective 
original lines of action to lines of action through point O. 

2. Add all forces at O to form the resultant force R, & add all couples to form the 
resultant couple MO. We now have the single force–couple system, as shown in Fig. c.

3. In Fig. 2/14d, find the line of action of R by requiring R to have a moment of MO about 
point O. Note that the force systems of Figs. 2/14a and 2/14d are equivalent, and that 
Σ(Fd) in Fig. 2/14a is equal to Rd in Fig. 2/14d.

36

Mubarek Z



2. FORCE SYSTEMS…
2D System …

Example
♠ We Determine the resultant of the four forces 

and one couple which act on the plate shown.

Solution: Point O is selected as a convenient 
reference point for the force–couple system which is 
to represent the given system.

Also determine the final line of action of R such that R alone 
represents the original system.

Generally, the desired line of action by principle of moments:-
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2. FORCE SYSTEMS…
2D System …

Exercise
1) Determine and locate the resultant R of 

the two forces and one couple acting on 
the I-beam.

2) If the resultant of the two forces 
and couple M passes through point 
O, determine M.

3) Replace the two forces and couple 
by an equivalent couple M and 
resultant force R at A.
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2. FORCE SYSTEMS…
3D Systems

Rectangular Components
♠ Many problems in mechanics require analysis in three dimensions, and 

for such problems it is often necessary to resolve a force into its three 
mutually perpendicular components. 

♠ The force F acting at point O in Fig. 2/16 has the rectangular components 
Fx, Fy, Fz, where

The unit vectors i, j, and k are in the x-, y-, and 
z-directions, respectively. Using the direction 
cosines of F, which are l =cos Ɵx, m =cos Ɵy,
and n =cos Ɵz, where l 2+m2+n2=1, we may 
write the force as

Force, F equals the force magnitude F times a unit 
vector nF which characterizes the direction of F, or
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Force-couple System
♠ The In solving three-dimensional problems, one must usually find the x, 

y, and z scalar components of a force. In most cases, the direction of a 
force is described:

(a) by two points on the line of action of the force or
(b) by two angles which orient the line of action.

(a) Specification by two points on the line of 
action of the force.
If the coordinates of points A and B of Fig. 2/17 
are known, the force F may be written as

Thus the x, y, and z scalar components of F 
are the scalar coefficients of the unit vectors 
i, j, and k, respectively.
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3D System …

(b) Specification by two angles which orient the 
line of action of the force. 
Consider the geometry of Fig. 2/18. We assume that 
the angles Ɵ and Ø are known. First resolve F into 
horizontal and vertical components.

Then resolve the horizontal component Fxy

into x- and y-components

we must use a right-handed set of axes in our three-dimensional work to be consistent 
with the right-hand-rule definition of the cross product. When we rotate from the x- to the 
y-axis through the 90° angle, the positive direction for the z-axis in a right-handed system 
is that of the advancement of a right-handed screw rotated in the same sense. This is 
equivalent to the right-hand rule

41

Mubarek Z



2. FORCE SYSTEMS…
3D System …

Example: The rigid pole and cross-arm assembly is supported by the three 
cables shown. A turnbuckle at D is tightened until it induces a tension T in 
CD of 1.2 kN. Express T as a vector. Does it make any difference in the result 
which coordinate system is used? 

• Coordinate of point C(-1.5,0,4.5)

• Coordinate of point D(0,3,0)

• Vector CD=(1.5,3,-4.5) or
CD=1.5i + 3j-4.5k and 

• mag. of CD 

/CD/=  

/CD/=   =5.61
• Unit vector of CD, nCD=CD/(/CD/)

nCD=CD/(/CD/)=[1.5i + 3j-4.5k]/5.61
nCD=0.267 i + 0.535 j – 0.802 k

• Vector, T=/T/ * nCD

T=1.2*[0.267 i + 0.535 j – 0.802 k] kN
Vector T= 0.321 i + 0.641 j – 0.962 k  kN,

NO, co. system do not affect.

Solution:

(Ans)

42

Mubarek Z



2. FORCE SYSTEMS…
3D System …

Moment in 3D
♠ In 2D analyses it is often convenient to determine a moment magnitude by 

scalar multiplication using the moment-arm rule. In 3Ds, however, the 
determination of the perpendicular distance between a point or line and the 
line of action of the force can be a tedious computation. A vector approach 
with cross-product multiplication then becomes advantageous

Evaluating the Cross Product
The cross-product expression for MO may be written in 
the determinant form

Note the symmetry and order of the terms, and 
note that a right-handed coordinate system must 
be used. Expansion of the determinant gives
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3D System …

Moment in 3Ds …
♠ The scalar magnitudes of the moments of these forces about the positive 

x-, y-, and z-axes through O can be obtained from the moment-arm rule, 
and are

which agree with the respective terms in the determinant expansion for
the cross product, rXF.
♠ The magnitude of the moment, /M/= 𝟐 𝟐 𝟐
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3D System …

Varignon’s Theorem in Three Dimensions
♠ The theorem is easily extended to three dimensions. Figure 2/24 shows a
system of concurrent forces F1, F2, F3, . . . . The sum of the moments
about O of these forces is

where we have used the distributive law for 
cross products. Using the symbol MO to 
represent the sum of the moments on the 
left side of the above equation, we have

This equation states that the sum of the moments of a system of concurrent forces 
about a given point equals the moment of their sum about the same point. 

45

Mubarek Z



2. FORCE SYSTEMS…
3D System …

Example: The turnbuckle is tightened until the tension in cable AB is 
2.4 kN. Determine the moment about point O of the cable force 
acting on point A and the magnitude of this moment.

46

Solution:
 First determine coordinates of 

necessary points, in this case 
point O, A, and B.

 Write the force as a vector 
 Determine position vector, rOA
 Determine moment about O, 

Use the cross product as 
M=rXF
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3D System …

• Coordinate of point A(1.6,0,2) & of point B(2.4,1.5,0)
‡ Vector AB=(0.8,1.5,-2) and
‡ Mag. Of AB, 

/AB/=  

/AB/=   =2.625
‡ Unit vector of AB, nAB=AB/(/AB/)
‡ nAB=[0.8i + 1.5j-2k]/2.625

Vectorial representation of tension force, T
• Vector, T=/T/ * nAB

T=2.4*[0.3047 i + 0.571 j – 0.762 k] kN
Vector T= 0.731 i + 1.371 j – 1.829 k  (kN),

Solution:

(Ans)

We begin by writing the described force as a vector.

• Moment arm, rOA=?
• Coordinate of O (0,0,0) &Coordinate of A(1.6,0,2)
• Vector OA= rOA=(1.6,0,2)=1.6 i+0 j+ 2 k  (m)
 Moment about O, MO=rOAXT

This vector has a magnitude, /Mo/
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3D System …

Example: The rigid pole and cross-arm assembly of example done previously is 
shown again here. Determine the vector expression for the moment of the 1.2-
kN tension (a) about point O and (b) about the pole z-axis (c) about point B

• Coordinate of point C(-1.5,0,4.5)
• Coordinate of point D(0,3,0)

• Vector CD=(1.5,3,-4.5) or
CD=1.5i + 3j-4.5k and 

• mag. of CD 

/CD/=  

/CD/=   =5.61
• Unit vector of CD, nCD=CD/(/CD/)

nCD=CD/(/CD/)=[1.5i + 3j-4.5k]/5.61
nCD=0.267 i + 0.535 j – 0.802 k

• Vector, T=/T/ * nCD

T=1.2*[0.267 i + 0.535 j – 0.802 k] kN
Vector T= 0.321 i + 0.641 j – 0.962 k  kN,

Solution: Vector T is the same for all 
cases but the moment arm is different
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Solution…

(Ans)

• Moment arm, rOC=? Using the Figure Coordinate of point O (0,0,0) &
that of point C(-1.5,0,4.5)

• Vector OC= rOC=(-1.5,0,4.5)= -1.5 i+0 j+ 4.5 k  (m)
 Moment about O, MO=rOCXT

MO=[-1.5 i+0 j+ 4.5 k ]X[0.321 i + 0.641 j – 0.962 k ];

(a) about point O 

Mo=[(0∗(−0.962)−(0.641∗4.5)] i −[((−1.5)∗(−0.962))−(0.321∗4.5)] j+

[((-1.5)*0.641)-(0.321*0)]k=-2.885 i+0.0j -0.962 k (kNm) …..(Ans)

(b) about point Z-axis, MZ=-0.962 k (kNm) z-component of Mo

• Moment arm, rBC=?
• Coordinate of point B (0,0,4.5) & of point C(-1.5,0,4.5)
• Vector BC= rBC=(-1.5,0,0)= -1.5 i+0 j+ 0 k  =-1.5 i (m)
 Moment about B, MB=rBCXT

MB=[-1.5 i ]X[0.321 i + 0.641 j – 0.962 k ] ;
MB=[(0∗(−0.962)−(0.641∗0)] i −[((−1.5)∗(−0.962))−(0.321∗0)] j+

[((-1.5)*0.641)-(0.321*0)]k= -1.443 j -0.962 k (kNm) …..(Ans)

(c) about point B, MB=?
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3D System …

Couples in Three Dimensions
♠ A couple is the combined moment of two equal, opposite, and non-collinear forces.
♠ The unique effect of a couple is to produce a pure twist or rotation regardless of 

where the forces are located. 
♠ Figure 2/25 shows two equal and opposite forces F and -F acting on a body. The 

vector r runs from any point B on the line of action of -F to any point A on the line 
of action of F. Points A and B are located by position vectors rA and rB from any 
point O. The combined moment of the two forces about O is 

However, rA - rB =r, so that all reference to the 
moment center O disappears, and the moment of 
the couple becomes

Thus, the moment of a couple is the same about all points. 
The magnitude of M is M =Fd, where d is the perpendicular 
distance between the lines of action of the two forces, as 
described above. The moment of a couple is a free vector, 
whereas the moment of a force about a point (which is also 
the moment about a defined axis through the point) is a sliding 
vector whose direction is along the axis through the point
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3D System …

Example: A force of 40 lb is applied at A to the handle of the control lever which is 
attached to the fixed shaft OB. In determining the effect of the force on the shaft at 
a cross section such as that at O, we may replace the force by an equivalent force at 
O and a couple. Describe this couple as a vector M.

The couple vector is perpendicular to the plane in which the force is shifted, and  its sense 
is that of the moment of the given force about O. The direction of M in the y-z plane is 
given by

Solution
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Exercise: The two forces acting on the handles of the pipe
wrenches constitute a couple M. Express the couple as a vector.

52

A(0,0.25,0)

B(-0.15,-0.25,0)

O

r=BA=0.15i +0.5j+0k
F=-150k (N)
Mo=rXF

=[0.5*(-150)-0] i-[0.15*(-150)-0] j+0k
Mo=-75 i + 22.5 j (Nm)….Answer
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3D System …

Resultant
♠ We defined the resultant as the simplest force combination which can replace 

a given system of forces without altering the external effect on the rigid body 
on which the forces act. For example, for the Force system F1, F2, F3 . . . acting 
on a rigid body  shown in Figure (a). we may move each of them in turn to the 
arbitrary point O, provided we also introduce a couple for each force 
transferred. Thus, for example, we may move force F1 to O, provided we 
introduce the couple M1 =r1X F1, where r1 is a vector from O to any point on the 
line of action of F1. When all forces are shifted to O in this manner, we have a 
system of concurrent forces at O and a system of couple vectors as in Figure 
(b). The concurrent forces added vectorially to produce a resultant force R, 
and the couples may also be added to produce a resultant couple M
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3D System …

Resultant
♠ The couple vectors are shown through point O, but because they are free 

vectors, they may be represented in any parallel positions. The magnitudes of 
the resultants and their components are

♠ The point O selected as the point of concurrency for the forces is arbitrary, 
and the magnitude and direction of M depend on the particular point O 
selected. The magnitude and direction of R, however, are the same no matter 
which point is selected.

Parallel Forces: For a system of parallel forces not all in the same plane, the 
magnitude of the parallel resultant force R is simply the magnitude of the 
algebraic sum of the given forces. The position of its line of action is obtained 
from the principle of moments by requiring that r XR = MO. Here r is a position 
vector extending from the force–couple reference point O to the final line of 
action of R, and MO is the sum of the moments of the individual forces about O.
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Resultant
 Wrench Resultant: When the resultant couple vector M is parallel to the 

resultant force R, as shown in Fig. 2/29, the resultant is called a wrench. 
 By definition a wrench is positive if the couple and force vectors point in the 

same direction and negative if they point in opposite directions. 

 Any general force system as shown in Figure 2/30 (a) below may be 
represented by a wrench applied along a unique line of action. This reduction 
is illustrated in Figure 2/30

55

 A common example of a positive 
wrench is found with the application of 
a screwdriver, to drive a right-handed 
screw. 

Fig. 2/29
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Example 1
1. Determine the resultant of the force and couple 
system which acts on the rectangular solid.

Solution: We choose point O as a convenient 
reference point for the initial step of reducing the 
given forces to a force–couple system.

The resultant force is

The sum of the moments about O is

56

N.B
 Since the force summation is zero, we conclude that the resultant, if it exists, 

must be a couple.
 The moments associated with the force pairs are easily obtained by using the 

M =F*d rule and assigning the unit-vector direction by inspection. In many 
three-dimensional problems, this may be simpler than the M = r XF approach.Mubarek Z
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Example 2
2. Determine the resultant of the system of parallel 
forces which act on the plate. Solve with a vector 
approach.
Solution: Transfer of all forces to point O results in 
the force–couple system
• The resultant force R and Couple M about point O

57

The placement of R so that it alone represents the above 
force–couple system is determined by the principle of 
moments in vector form

From the equality of vectors we get
Solving gives  x=-0.357 m and z = 0.250 m are the coordinates through which the line of action of R 
must pass. The value of y can be any value, as permitted by the principle of transmissibility. Thus, as 
expected, the variable y drops out of the above vector analysis.
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Example 3
1. Determine the wrench resultant of the three 
forces acting on the bracket. Calculate the 
coordinates of the point P in the x-y plane 
through which the resultant force of the wrench 
acts. Also find the magnitude of the couple M of 
the wrench.

58

• Writing Forces as a vector
F1=20 i (lb) F2=40 j (lb) F3=40 k (lb)

Resultant force R= F1+F2+F3 
R=20i + 40j +40k (lb)
/R/=60 lb

• Writing position vector of the 
moment arm to the point of 
application of the forces

r1 =0, r2 =3k (in), r2 =5i +4j (in)

Solution: 
• Calculate the resultant at origin O(0,0,0)

(5,4,0)

(0,0,3)

(0,0,0)
F3

F1

F2
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59

+ + 

Mo R
 Convert the Force-couple system to the wrench system, 

determine the parallel projection of the moment(Mll) in 
the direction of R. & then the perpendicular 
projection(MT) of the moment Mo. 

Mll R

Mo .R=40*20+(-200*40)+0*40= -7200  

Mll R = ିଶ
∗

*[20i +40j+ 40k],   Mll = -40i -80j -80k 

Thus MT=M-Mll ; MT =[40i -200j] –[-40i -80j -80k]
MT=80i -120j +80k

RMo

Mo Force-couple system

R

• Mo=r1xF1 + r2XF2 +r3XF3
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60

 To ignore MT, the resultant force R should be placed at 
P(x,y,0) so that it make a couple that is equal to MT.

 Thus, rPXR=MT where rP= xi +yj +0k

= 80i -120j +80k

 40yi -40xj +[40x-20y]k=80i -120j +80k

Solve 40y=80,  y=2 in   and   -40x=-120,  x=3 in
• R be locate at P(3,2,0)….Ans.
• Magnitude of the couple of the wrench,/Mll/

/Mll/= −40 ∗ −40 + −80 ∗ −80 + −80 ∗ −80
 

/Mll/=120 lbin…Ans. R

Mll

Wrench resultant(-ve wrench) …Ans.

R R

-R

rP

X=3``

(x,y,0)

y =2``
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Exercise
1) The concrete slab supports the six vertical loads 

shown. Determine the x- and  y-coordinates of 
the point on the slab through which the resultant 
of the loading system passes.

2) The pulley wheels are subjected to the loads 
shown. Determine the equivalent force–couple 
system at point O.
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3. EQUILIBRIUM
Introduction

 Equilibrium is a condition in which all influences acting cancel each other, 
so that a static or balanced situation results. 

 When a body is in equilibrium, the resultant of all forces acting on it is 
zero. Thus, the resultant force R and the resultant couple M are both zero, 
and we have the equilibrium equations

♠ These requirements are both necessary and sufficient conditions for 
equilibrium.
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3. EQUILIBRIUM…
Section A Equilibrium in 2Ds

Equilibrium Conditions
We defined equilibrium 
as the condition in 
which the resultant of 
all forces and moments 
acting on a body is 
zero. Stated in another 
way, a body is in 
equilibrium if all forces 
and moments applied 
to it are in balance.
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3. EQUILIBRIUM…
SECTION A EQUILIBRIUM IN TWO DIMENSIONS

System Isolation and the Free-Body Diagram
 Before we apply the  above equilibrium equations we must define 

unambiguously the particular body or mechanical system to be analyzed 
and represent clearly and completely all forces acting on the body. 
Omission of a force which acts on the body in question, or inclusion of a 
force which does not act on the body, will give erroneous results.

 Once we decide which body or combination of bodies to analyze, we then 
treat this body or combination as a single body isolated from all 
surrounding bodies. This isolation is accomplished by means of the free-
body diagram, which is a diagrammatic representation of the isolated 
system treated as a single body. The diagram shows all forces applied to 
the system by mechanical contact with other bodies, which are imagined 
to be removed.
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3. EQUILIBRIUM…
SECTION A EQUILIBRIUM IN TWO DIMENSIONS

Modeling the Action of Forces
♠ The Figure below shows the common types of force application on mechanical 

systems for analysis in 2D. Each example shows the force exerted on the body to be 
isolated, by the body to be removed. Newton’s third law, which notes the existence 
of an equal and opposite reaction to every action, must be carefully observed. 
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SECTION A EQUILIBRIUM IN TWO DIMENSIONS
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3. EQUILIBRIUM…
Section A Equilibrium in 2Ds

Constraints and Statical Determinacy
 The equilibrium equations developed in this chapter are both necessary and 

sufficient conditions to establish the equilibrium of a body. However, they do not 
necessarily provide all the information required to calculate all the unknown forces 
which may act on a body in equilibrium. Whether the equations are adequate to 
determine all the unknowns depends on the characteristics of the constraints 
against possible movement of the body provided by its supports. 

 By constraint we mean the restriction of movement. Example:- the roller, ball, and 
rocker provide constraint normal to the surface of contact, but none tangent to the 
surface. 

 A rigid body, or rigid combination of elements treated as a single body, which 
possesses more external supports or constraints than are necessary to maintain an 
equilibrium position is called statically indeterminate. 

 Supports which can be removed without destroying the equilibrium condition of the 
body are said to be redundant. 

 The number of redundant supporting elements present corresponds to the degree 
of statical indeterminacy and equals the total number of unknown external forces, 
minus the number of available independent equations of equilibrium. On the other 
hand, bodies which are supported by the minimum number of constraints necessary 
to ensure an equilibrium configuration are called statically determinate, and for 
such bodies the equilibrium equations are sufficient to determine the unknown 
external forces.
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3. EQUILIBRIUM…
Section A Equilibrium in 2Ds

Adequacy of Constraints
 We must be aware of the nature of the constraints before we attempt to solve an 

equilibrium problem. The existence of three constraints for a two-dimensional 
problem does not always guarantee a stable equilibrium configuration. 

 In Figure (a), at point A of the rigid body is fixed by the two links and cannot move, 
and the third link prevents any rotation about A. Thus, this body is completely fixed 
with three adequate (proper) constraints.

 In Figure (b), there is no resistance to rotation at A where as in Figure (c) the three 
parallel links could offer no initial resistance to a small vertical movement of the body 
as a result of external loads applied to it in this direction. The constraints in these two 
examples are often termed improper. In both cases, this body is incompletely fixed 
under partial constraints.

 In Figure (d), we have a condition of complete fixity, with link 4 acting as a fourth 
constraint which is unnecessary to maintain a fixed position. Link 4, then, is a 
redundant constraint, and the body is statically indeterminate.
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Step 1. Decide which system to isolate.
Step 2. Next isolate the chosen system 
by drawing a diagram which represents 
its complete external boundary.
Step 3. Identify all forces which act on 
the isolated system as applied by the 
removed contacting and attracting 
bodies, and represent them in their 
proper positions on the diagram of the 
isolated system. Make a systematic 
traverse of the entire boundary to 
identify all contact forces. Include body 
forces such as weights, where 
appreciable. Represent all known forces 
by vector arrows, each with its proper 
magnitude, direction, and sense 
indicated.
Step 4. Show the choice of coordinate 
axes directly on the diagram. Pertinent 
dimensions may also be represented for 
convenience. 

Construction of Free-Body Diagrams
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3. EQUILIBRIUM…
SECTION A EQUILIBRIUM IN TWO DIMENSIONS

Example:
1) Calculate the tension T in the cable which supports the 1000-lb load with
the pulley arrangement shown. Each pulley is free to rotate about its bearing, and 
the weights of all parts are small compared with the load. Find the magnitude of 
the total force on the bearing of pulley C.
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SECTION A EQUILIBRIUM IN TWO DIMENSIONS

Solution. The free-body diagram of each pulley is drawn in its relative position to 
the others. We begin with pulley A, which includes the only known force.
With the unspecified pulley radius designated by r, the equilibrium of moments
about its center O and the equilibrium of forces in the vertical direction require 

Just like pulley A we may write the equilibrium of forces on 
pulley B . Simply by inspection 

For pulley C the angle Ɵ= 30 in no way affects the 
moment of T about the center of the pulley, so that 
moment equilibrium requires

Equilibrium of the pulley in the x- and y-directions 
requires

(Ans)
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3. EQUILIBRIUM…
SECTION A EQUILIBRIUM IN TWO DIMENSIONS

Example:
2) Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution. The given sketch constitutes 
the free-body diagram of the isolated
section of the joint in question and 
shows the five forces which are in 
equilibrium.

For the x-y axes as shown we have
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3. EQUILIBRIUM…
SECTION A EQUILIBRIUM IN 2DS

Example:
3) Determine the magnitude T of the tension in 
the supporting cable and the magnitude of the 
force on the pin at A for the jib crane shown. The 
beam AB is a standard 0.5-m I-beam with a mass 
of 95 kg per meter of length.

Solution:
The weight of the beam is 95(10-3)*5*9.81 = 

4.66 kN and acts through its center. 

The free body diagram(FBD) is 

Let`s take moment about A, the counterclockwise 
sense as positive we write

Equating the sums of forces in the x- and y-directions to zero gives
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3. EQUILIBRIUM…
SECTION A EQUILIBRIUM IN TWO 2DS…

2)The 500-kg uniform beam is 
subjected to the three external 
loads shown. Compute the 
reactions at the support point O. 
The x-y plane is vertical.

EXERCISE
1) Three cables are joined at the junction 
ring C. Determine the tensions in cables 
AC and BC caused by  the weight of the 
30-kg cylinder.
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN THREE DIMENSIONS

Equilibrium Conditions
 The general conditions for the equilibrium of a body require that the resultant 

force and resultant couple on a body in equilibrium be zero. These two vector 
equations of equilibrium and their scalar components may be written as

These six equations are both necessary and 
sufficient conditions for complete equilibrium. 
The reference axes may be chosen arbitrarily as 
a matter of convenience, the only restriction 
being that a right-handed coordinate system 
should be chosen when vector notation is used.
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3DS
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3DS…
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3Ds…
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3Ds…

Example
The uniform 7-m steel shaft has a mass of 200 kg and 
is supported by a ball and-socket joint at A in the 
horizontal floor. The ball end B rests against the 
smooth vertical walls as shown. Compute the forces 
exerted by the walls and the floor on the ends of the 
shaft.

W =mg =200(9.81) =1962 N
The free body diagram is as shown below

Solution:

The vertical position of B is found from

h=3m
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3Ds…

Solution: continued …

Scalar solution: Evaluating the scalar moment 
equations about axes through A parallel, 
respectively, to the x- and y-axes, gives
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3Ds…

Solution: continued …

Vector solution: We will use A as a moment center to 
eliminate reference to the forces at A. 
• The position vectors needed to compute the 

moments about A are

Equating the coefficients of i, j, and k to zero and solving give

 The forces at A are easily determined by
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3Ds…

Exercise:
1) The light right-angle boom which supports the 400-kg cylinder is 
supported by three cables and a ball and-socket joint at O attached to the 
vertical x-y surface. Determine the reactions at O and the cable tensions 
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3. EQUILIBRIUM…
SECTION B EQUILIBRIUM IN 3Ds…

Exercise:
3) The square steel plate has a mass of 1800 kg with mass center at its 
center G. Calculate the tension in each of the three cables with which 
the plate is lifted while remaining horizontal.
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4. ANALYSIS OF SIMPLE STRUCTURES
Introduction

 In Chapter 3 above, we studied the equilibrium of a single rigid body or a 
system of connected members treated as a single rigid body. We first 
drew a free-body diagram of the body showing all forces external to the 
isolated body and then we applied the force and moment equations of 
equilibrium to determine unknown external reactions. 

 In this chaper, we focus on the determination of the forces internal to a 
structure—that is, forces of action and reaction between the connected 
members.

 An engineering structure is any connected system of members built to 
support or transfer forces and to safely withstand the loads applied to it.

 To determine the forces internal to an engineering structure, we must 
dismember the structure and analyze separate free-body diagrams of 
individual members or combinations of members. 

 This analysis requires careful application of Newton’s third law, which 
states that each action is accompanied by an equal and opposite reaction.

 we analyze the internal forces acting in several types of structures—namely, 
trusses, frames, and machines. In this treatment

 we consider only statically determinate structures, which do not have more 
supporting constraints than are necessary to maintain an equilibrium 
configuration. Thus, as we have already seen, the equations of equilibrium are 
adequate to determine all unknown reactions.
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4. STRUCTURES …
Plane Trusses

 A framework composed of members joined at their ends to form a rigid 
structure is called a truss.

 Bridges, roof supports, derricks, and other such structures are common 
examples of trusses. 

 Structural members commonly used are I-beams, channels, angles, bars, 
and special shapes which are fastened together at their ends by welding, 
riveted connections, or large bolts or pins. When the members of the 
truss lie essentially in a single plane, the truss is called a plane truss.
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For bridges and similar structures, plane 
trusses are commonly utilized in pairs 
with one truss assembly placed on each 
side of the structure. The combined 
weight of the roadway and vehicles is 
transferred to the longitudinal stringers, 
then to the cross beams, and finally, 
with the weights of the stringers and 
cross beams accounted for, to the upper 
joints of the two plane trusses which 
form the vertical sides of the structure. 

L represent the joint loadingsMubarek Z



4. STRUCTURES…
Plane Trusses
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Commonly Used Bridge Trusses

Commonly Used Roof TrussesMubarek Z



4. STRUCTURES…
Plane Trusses…

Simple Truss

88

The basic element of a plane truss is the triangle. Three bars joined by pins at their 
ends, Fig. 4/3a, constitute a rigid frame. The term rigid is used to mean non-collapsible 
and also to mean that deformation of the members due to induced internal strains is 
negligible. On the other hand, four or more bars pin-jointed to form a polygon of as 
many sides constitute a nonrigid frame. We can make the nonrigid frame in Fig. 4/3b 
rigid, or stable, by adding a diagonal bar joining A and D or B and C and thereby 
forming two triangles. We can extend the structure by adding additional units of two 
end-connected bars, such as DE and CE or AF and DF, Fig. 4/3c, which are pinned to two 
fixed joints. In this way the entire structure will remain rigid. Structures built from a 
basic triangle in the manner described are known as simple trusses. When more 
members are present than are needed to prevent collapse, the truss is statically 
indeterminate. A statically indeterminate truss cannot be analyzed by the equations of 
equilibrium alone. Additional members or supports which are not necessary for 
maintaining the equilibrium configuration are called redundant.
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4. STRUCTURES…
Plane Trusses…

Simple Truss

89

To design a truss we must first determine the forces in the various members and then 
select appropriate sizes and structural shapes to withstand the forces. Several 
assumptions are made in the force analysis of simple trusses. First, we assume all 
members to be two-force members. A two-force member is one in equilibrium under 
the action of two forces only. Each member of a truss is normally a straight link 
joining the two points of application of force. The two forces are applied at the ends 
of the member and are necessarily equal, opposite, and collinear for equilibrium. 
When we represent the equilibrium of a portion of a two-force member, the tension 
T or compression C acting on the cut section is the same for all sections.

Two-Force Members

Joint
C1

T1

C2 C3
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4. STRUCTURES…
Plane Trusses…

Method of Joints

90

To determine member force AF, & ABJoint A

Similarly Joint F is to be analyzed and then joint 
B follows. Finally joint E and C can be analyzed.

Second, analyze internally by taking joint forces
We begin the analysis with any joint where at least 
one known load exists and where not more than 
two unknown forces are present. The solution may 
be started with the pin at the left end.

Frist, analyze the whole system externally for 
determining external reactions.
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4. STRUCTURES…
Plane Trusses…

Example: Compute the force in each member 
of the loaded cantilever truss by the  method 
of joints

91

Solution:
Steps 1: Analyze the whole system externally 

i.e determine external reactions at D & E
• By using the whole free body diagram

The equations of equilibrium give
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4. STRUCTURES…
Plane Trusses…

Solution continued …

92

Steps 2: Analyze the truss joints internally  i.e determine internal force in each member 
 draw free-body diagrams showing the forces acting on each of the connecting pins 

(joints). Write equilibrium equations in x and y directions at each joints. Begin with the 
simple joint and continue consecutively by giving priority for simplicity of the joint.

Finally, from joint E there results

and the equation ΣFx = 0 checksMubarek Z



4. STRUCTURES…
Plane Trusses…

Method of joints
 Exercise

93

1. Determine the force in each member 
of the loaded truss.

2. Determine the force in each member of the 
loaded truss. All triangles are equilateral.
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4. STRUCTURES…
Plane Trusses…

Method of Section
 When analyzing plane trusses by the method of joints, we need only two 

of the three equilibrium equations because the procedures involve 
concurrent forces at each joint. We can take advantage of the third or 
moment equation of equilibrium by selecting an entire section of the 
truss for the free body in equilibrium under the action of a 
nonconcurrent system of forces. This method of sections has the basic 
advantage that the force in almost any desired member may be found 
directly from an analysis of a section which has cut that member. Thus, it 
is not necessary to proceed with the calculation from joint to joint until 
the member in question has been reached. In choosing a section of the 
truss, we note that, in general, not more than three members whose 
forces are unknown should be cut, since there are only three available 
independent equilibrium relations.

94

Mubarek Z



4. STRUCTURES…
Plane Trusses…

Example: Calculate the force in member DJ of 
the Howe roof truss illustrated. Neglect any 
horizontal components of force at the supports.
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By the analysis of section 1, CJ is obtained from

From the FBD of section 2, which now includes the 
known value of CJ, a balance of moments about G 
is seen to eliminate DE and JK. Thus,

Solution: 1st determine reactions then
Use FBD of the considered sections
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4. STRUCTURES…
Plane Trusses…

Exercise

96

1. Determine the force in member CG 

2. Determine the forces in members 
FG, CG, BC, and EF for the loaded 
crane truss. 
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4. STRUCTURES…
Frames and machines

 A structure is called a frame or machine if at least one of its individual 
members is a multiforce member. A multiforce member is defined as one 
with three or more forces acting on it, or one with two or more forces 
and one or more couples acting on it.

 Frames are structures which are designed to support applied loads and 
are usually fixed in position. 

 Machines are structures which contain moving parts and are designed to 
transmit input forces or couples to output forces or couples. Because 
frames and machines contain multiforce members, the forces in these 
members in general will not be in the directions of the members. The 
forces acting on each member of a connected system are found by 
isolating the member with a free-body diagram and applying the 
equations of equilibrium. The principle of action and reaction must be 
carefully observed when we represent the forces of interaction on the 
separate free-body diagrams. 

 If the structure contains more members or supports than are necessary to prevent 
collapse, then, as in the case of trusses, the problem is statically indeterminate, 
and the principles of equilibrium, although necessary, are not sufficient for 
solution. Although many frames and machines are statically indeterminate, we will 
consider in this article only those which are statically determinate.

97

Mubarek Z



4. STRUCTURES…
Frames and machines

Example: The frame supports the 400-kg load 
in the manner shown. Neglect the weights of 
the members compared with the forces 
induced by the load and compute the 
horizontal and vertical components of all 
forces acting on each of the members. 
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From the FBD of the entire frame we 
determine the external reactions. Thus,

Solution:
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4. STRUCTURES…
Frames and machines

Solution: continued…

99

The solution may proceed by use of a 
moment equation about B or E for
member BF, followed by the two force 
equations. Thus,

Positive numerical values of the unknowns mean that we assumed their directions 
correctly on the free-body diagrams. The value of Cx = Ex = 13.08 kN obtained by 
inspection of the free-body diagram of CE is now entered onto the diagram for AD, 
along with the values of Bx and By just determined. The equations of equilibrium may 
now be applied to member AD as a check, since all the forces acting on it have already 
been computed. The equations give
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5. INTERNAL ACTIONS IN BEAMS
Introduction

 Beams are structural members which offer resistance to bending due to 
applied loads. Most beams are long prismatic bars, and the loads are 
usually applied normal to the axes of the bars.

 Beams are undoubtedly the most important of all structural members, 
so it is important to understand the basic theory underlying their design.

 To analyze the load-carrying capacities of a beam we must first establish 
the equilibrium requirements of the beam as a whole and any portion of 
it considered separately. 

 Second, we must establish the relations between the resulting forces and 
the accompanying internal resistance of the beam to support these 
forces. The first part of this analysis requires the application of the 
principles of statics. The second part involves the strength 
characteristics of the material and is usually treated in studies of the 
mechanics of solids or the mechanics of materials(i.e an other course).
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5. BEAMS…
Types of beams

 Beams supported so that their external support reactions can be 
calculated by the methods of statics alone are called statically 
determinate beams. A beam which has more supports than needed to 
provide equilibrium is statically indeterminate. To determine the support 
reactions for such a beam we must consider its load-deformation 
properties in addition to the equations of static equilibrium.
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Compound beam (one example)

Overhanging beam

Simply supported beams
(simple beams)
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5. BEAMS…

 Beams may also be identified by the type of external loading they 
support. 

102

• Concentrated loads

• Distributed loads
 Uniform: constant load intensity, w

 Linearly varying 

 Trapezoidal………………….

Beams supporting 
Resultant load R is 
represented by the area 
formed by the intensity w 
(force per unit length of
beam) and the length L 
over which the force is 
distributed. The resultant 
passes through the 
centroid of this area.

The trapezoidal area 
is broken into a 
rectangular and a 
triangular area, and 
the corresponding 
resultants R1 and R2
of these subareas are 
determined 
separately. 

Determining external effects
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5. BEAMS…

 For a more general load distribution, 

103

 we must start with a differential increment of 
force dR =w dx.  The total load R is then the 
sum of the differential forces, or

 The resultant R is located at the centroid of the 
area under consideration. The x-coordinate of 
this centroid is found by the principleof
moments

 Once the distributed loads have been reduced to their equivalent 
concentrated loads, the external reactions acting on the beam may 
be found by a straightforward static analysis

Determining external effects…
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5. BEAMS…
Determining external effects...

Example
 Determine the reactions at A and B for the beam subjected to a 

combination of distributed and point loads.

104

By

AX

Ay

1.3kN

0.75kN

R1=(2kN/m)*1.8m/2= 1.8kN
R2=(2kN/m)*1.2m/2= 1.2kN

1.8kN

1.2kN

1.2m2.6m

ΣMA=0, By*4.8 – 1.3*3.6 - 1.2*1 =0 ;
By=1.23 kN 

ΣFx=0, Ax – 0.75=0; 
Ax=0.75kN 

ΣFy=0, Ay + 1.23- 2 - 1.2 -1.3=0 ;  
Ay=3.07 KN

Mubarek Z
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5. BEAMS…

Exercise

105

1. Calculate the support reactions 
at A and B for the beam subjected 
to the two linearly varying load 
distributions

2. A cantilever beam supports the 
variable load shown. Calculate the 
supporting force RA and moment 
MA at A

Determining external effects…
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5. BEAMS…
Determining internal effects

• In this article we introduce internal beam effects and apply 
principles of statics to calculate the internal shear force and 
bending moment as functions of location along the beam.

106

Shear, Bending, and Torsion
In addition to supporting tension or compression, a beam can resist
shear, bending, and torsion. These three effects are illustrated in 
Figures below. The force V is called the shear force, the couple M is 
called the bending moment, and the couple T is called a torsional 
moment. These effects represent the vector components of the 
resultant of the forces acting on a transverse section of the beam as 
shown in the right figure.
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5. BEAMS…
Determining internal effects …

• Consider the shear force V and bending moment M caused by 
forces applied to the beam in a single plane. The conventions for 
positive values of shear V and bending moment M shown in 
Figure below are the ones generally used.

• From the principle of action and reaction we can see that the 
directions of V and M are reversed on the two sections. It is 
frequently impossible to tell without calculation whether the 
shear and moment at a particular section are positive or 
negative. For this reason it is advisable to represent V and M in 
their positive directions on the free-body diagrams and let the 
algebraic signs of the calculated values indicate the proper 
directions.

107
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5. BEAMS…
Determining internal effects …

Example
• Determine the shear and moment distributions produced in the 

simple beam by the 4-kN concentrated load.

108

Solution: 1st using FBD of entire system
determine external or support reactions

A section of the beam of length x is next 
isolated with its FBD on which we show the 
shear V and the bending moment M in their 
positive directions. Equilibrium gives

These values of V and M apply to all sections of the beam to the left of the 4-kN load. A 
section of the beam to the right of the 4-kN load is next isolated with its
free-body diagram on which V and M are shown in their positive directions.
Equilibrium requires
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5. BEAMS…
Shear and moment diagrams

Example
• Determine the shear and moment 

distributions produced in the simple beam 
by the 4-kN concentrated load.

109

Solution: 
1st using FBD of entire system determine external or support reactions

A section of the beam of length x is next isolated with its FBD on 
which we show the shear V and the bending moment M in their 
positive directions. Equilibrium gives

These values of V and M apply to all sections of the beam to the left of the 4-kN load. 

x
x

1 2

FBD of Section 1
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5. BEAMS…
Shear and moment diagrams…

Solution: continued…

110

A section of the beam to the right of the 4-kN load is next isolated with its free-
body diagram on which V and M are shown in their positive directions. 
Equilibrium requires

FBD of Section 2

These results apply only to sections of the beam to the right of 
the 4-kN load. The values of V and M are plotted as shown.

The maximum bending moment occurs 
where the shear changes direction. As we 
move in the positive x-direction starting 
with x = 0, we see that the moment M is 
merely the accumulated area under the 
shear diagram.
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5. BEAMS…
Shear and moment diagrams…

Example 2: Construct the shear and moment diagrams for the beam loaded 
as shown 

111

1 kN/m
2 kNm

2 kN

BA 1 m 1 m2 m 2 m2 m

1 kN/m
2 kNm

2 kN

By1 m 1 m2 m 2 m2 m

Solution: 
i) Analyze the beam externally (i.e determine support reactions )

Ay

AX

• Free body diagram

(1 kN/m)*2m=
2kN

2 kNm

2 kN

By1 m 1 m1 m 2 m0.67 mAy

AX

• Substitute the distributed force by its equivalent concentrated force at its centroid

1 m1.33 m

1 kN/m)*2m/2=
1kN

By considering the beam as it is under state of equilibrium, we can solve the unknowns 
through equations of equilibrium Mubarek Z



5. BEAMS…
Shear and bending moment diagrams…

Example 2: Solution…

112

1 kN/m
2 kNm

2 kN

2.67kN

1 m 1 m2 m 2 m2 m

ii) Analyze the beam internally (i.e determine internal actions such as shear and 
bending moment )

2.33kN

• Free body diagram this time including values of support reactions

 ∑Fx=0, Assume        as positive, hence Ax+0=0, Ax=0
 ∑MA=0, Assume        CCW as positive moment, Thus

By*8m-1kN*1.33m-2kN*3m-2kNm-2kN*6m=0; By=2.67kN (  )
 ∑Fy=0, Assume     as  positive, thus Ay+By-1kN-2kN-2kN=0, 

Ay+By=5kN
by substituting the value of By=2.67 kN, then Ay=2.33kN (  )

• Decide on the number of segments to be analyzed. (i.e the number of sections to cut the beam )
 Show the representative sections on the above free body diagram 
(0≤ X ≤2)…by section 1---1                  where x: distance on the beam as it is measured from left end.
(2≤X ≤4)…by section 2---2
(4≤ X ≤5)…by section 3---3
(5≤ X ≤6)…by section 4---4
(6≤ X ≤8)…by section 5---5

1

1

2

2

3

3

4

4

5

5
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5. BEAMS…
Shear and moment diagrams…

Example 2: solution …

113

 Analysis of beam segment (0< X ≤2)

• Free body diagram of LHS of section 1---1 

x

• From triangle similarity, w/1=x/2  ; Thus w=(x/2)kN/m. 
• Its equivalent concentrated force =w*x/2

=(x/2)*(x/2)=x2/4
Which is to be located 2x/3 from left end

V M

w (kN/m)

x2.33kN

V M

X2/4 kN

w 1

x
2

2.33kN

2x/3 x/3

• Now it is easy to write equilibrium equation
 From 

∑Fy=0, Assume     as  positive, thus 
2.33-x2/4-V=0, V=2.33- x2/4;

∑MA=0, Assume        CCW as positive moment, thus

M-2.33*x+(x2/4)*x/3=0;  M=2.33x-x3/12

When x=0, V=2.33 kN
When X=2,  V=2.33- 22/4=1.33kN

When x=0, M=2.33*0-03/12=0 
When X=2,  M=2.33*2- 23/12=4kN
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5. BEAMS…
Shear and moment diagrams…

Example 2: solution …
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 Analysis of beam segment (2≤ X ≤4)

• Free body diagram of LHS of section 2---2

x

V M

1 (kN/m)

2.33kN

• Now it is easy to write equilibrium equation
 From 

∑Fy=0, Assume     as  positive, thus 
2.33-1-1(x-2)-V=0, V=2.33-1-(x-2); V=1.33 - (x-2);

∑MA=0, Assume        CCW as positive moment, thus

M-2.33*x+1*(x-1.33)+1(x-2)*(x-2)/2=0;  
M=2.33x-(x-1.33)-(x-2)*(x-2)/2

When x=2, V=1.33 kN
When X=4, V=1.33 - (4-2)=-0.67kN

When x=2, M=2.33*2-(2-1.33)-(2-2)*(2-2)/2=4kNm 
When X=4, M=2.33*4-(4-1.33)-(4-2)*(4-2)/2=4.65kNm 

2m x-2
x

V M

2.33kN
1.33m x-2

(1kN/m)*(x-2)=1(X-2) kN
(1kN/m)*2m=1 kN

0.67m
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5. BEAMS…
Shear and moment diagrams…

Example 2: solution …
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 Analysis of beam segment (4≤ X <5)

• Free body diagram of LHS of section 3---3.  RHS of this and other sections afterwards may be 
easy. But lets use LHS  for all of them. You can check by using RHS

x

V

M
1 (kN/m)

2.33kN

• Now it is easy to write equilibrium equation
 From 

∑Fy=0, Assume     as  positive, thus 
2.33-1-2-V=0, V=2.33-1-2=-0.67kN

(Shear force is constant throughout this segment);

∑MA=0, Assume        CCW as positive moment, thus

M-2.33*x+1*(x-1.33)+2(x-3)=0;  
M=2.33x-(x-1.33)-2(x-3)

When x=4, V=-0.67 kN
When X=5, V=-0.67kN

When x=4, M=2.33*4-(4-1.33)-2(4-3)=4.65kNm 
When X=5, M=2.33*5-(5-1.33)-2(5-3)=3.98kNm 

2m 2m
x

V

M

2.33kN
1.33m 1m

(1kN/m)*(2m)=2 kN
(1kN/m)*2m=1 kN

0.67m x-3
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5. BEAMS…
Shear and moment diagrams…

Example 2: solution …
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 Analysis of beam segment (5< X <6)

• Free body diagram of LHS of section 4---4.  

x

V

M

1 (kN/m)

2.33kN

• Now using equilibrium equation
 From 

∑Fy=0, Assume     as  positive, thus 
2.33-1-2-V=0, V=2.33-1-2=-0.67kN

(Shear force is constant throughout this segment);

∑MA=0, Assume        CCW as positive moment, thus

M-2.33*x+1*(x-1.33)+2(x-3)-2=0;  
M=2.33x-(x-1.33)-2(x-3)+2

When x=4, V=-0.67 kN
When X=5, V=-0.67kN

When x=5, M=2.33*5-(5-1.33)-2(5-3)+2=5.98kNm 
When X=6, M=2.33*6-(6-1.33)-2(6-3)+2=5.31kNm 

2m 2m
x

V

M

2.33kN
1.33m 1m

(1kN/m)*(2m)=2 kN
(1kN/m)*2m=1 kN

0.67m x-3

2kNm
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5. BEAMS…
Shear and moment diagrams…

Example 2: solution …
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 Analysis of beam segment (6< X <8)

• Free body diagram of LHS of section 5---5  

x
V

M
1 (kN/m)

2.33kN

• Now using equilibrium equation
 From   ∑Fy=0, Assume     as  positive, thus 2.33-1-2-2-V=0, V=2.33-1-2-2=-2.67kN

(Shear force is constant throughout this segment);

∑MA=0, Assume        CCW as positive moment, thus
M-2.33*x+1*(x-1.33)+2(x-3)-2+2(x-6)=0;  
M=2.33x-(x-1.33)-2(x-3)-2(x-6)+2

When x=6, V=-2.67 kN
When X=8, V=-2.67kN

When x=6, M=2.33*6-(6-1.33)-2(6-3)-2(6-6)+2=5.31kNm 
When X=8, M=2.33*8-(8-1.33)-2(8-3)-2(8-6)+2=0kNm 

2m 2m

2kNm

2 kN

1m 1m

x
V

M

2 kN

1.33m 1m

2kNm

2 kN

1m 1m

1 kN

0.67m 1m

2.33kN
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5. BEAMS…
Shear and moment diagrams…

Example 2: solution …
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iii) Draw diagrams

1 kN/m
2 kNm

2 kN

2.67kN
1 m 1 m2 m 2 m2 m

 Force diagram

 Shear force diagram

 Bending moment diagram

2.
33

0

-2.67

1.
33

-0.67

2.33kN

4

3.
98

5.
98

5.
31

4.
65

+
ve

-v
e

V
(k

N
)

M
(k

N
m

)

0
+

ve
-v

e
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5. BEAMS…
Shear and moment diagrams…

Example 2: Solution …

119

iv) Determine the minimum and maximum moment

The location of minimum and maximum moment corresponds to the 
location where shear force is zero. Thus, look at the shear force diagram 
and identify the segment. After this use the segment`s equation of shear to 
be equal to zero.
i.e in this case segment two(2≤x≤4) with equations
 V=1.33-(x-2) 
 M=2.33x-(x-1.33)-(x-2)*(x-2)/2

@ M max, , V=0 hence 1.33-(x-2)=0 , x=3.33m from left is the location
Where shear force is zero and corresponding maximum moment in this 
segement. 
Substituting x=3.33m in the moment equation gives the maximum 
moment as  Mmax=2.33*3.33-(3.33-1.33)-(3.33-2)*(3.33-2)/2

=7.76-2-0.88;  Mmax=4.88kNm in segment two. But look at 
the BMD, due to presence of CW concentrated moment at X=3, The BMD 
rises by that amount resulting in the maximum moment through out the 
beam. Thus Mmax=5.98 kNm

Mmin=0 by inspection, at the both in ends of the beam
Mubarek Z



5. BEAMS…
Shear and moment diagrams…

Exercise
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2. Plot the shear and moment diagrams for the beam loaded with both the 
distributed and point loads. What are the values of the shear and moment
at Determine the maximum bending moment, Mmax

1. Construct the shear and moment diagrams for the beam loaded by the 
2-kN force and the 1.6-kN m couple. State the value of the bending 
moment at point B.
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6. CENTROIDS
Introduction

Actually, “concentrated” forces do not exist in the exact sense, since every external force 
applied mechanically to a body is distributed over a finite contact area however small. 

When analyzing the forces acting on the car as a whole, if the dimension b of the contact 
area is negligible compared with the other pertinent dimensions, such as the distance 
between wheels, then we may replace the actual distributed contact forces by their 
resultant R treated as a concentrated force. 
• In this and other similar examples we may treat the forces as concentrated when 

analyzing their external effects on bodies as a whole.
• If, on the other hand, we want to find the distribution of internal forces in the 

material of the body near the contact location, where the internal stresses and strains 
may be appreciable, then we must not treat the load as concentrated but must 
consider the actual distribution. This king of problem will not be discussed in this 
course because it requires a knowledge of the properties of the material and belongs 
in more advanced treatments of the mechanics of materials and the theories of 
elasticity and plasticity.
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6. CENTROIDS
Introduction

When forces are applied over a region whose dimensions are not negligible 
compared with other pertinent dimensions, then we must account for the 
actual manner in which the force is distributed by summing up the effects of 
the distributed force over the entire region. We carry out this process by 
using the procedures of mathematical integration. 
For this purpose we need to know the intensity of the force at any location. There are 
three categories into which such problems fall;
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1) Line Distribution :- when a force is distributed along a line. 
The loading is expressed as force per unit length of line(N/m or 
kN/m). For example the continuous vertical load supported 
by a suspended cable, Fig. a, the intensity w of the 
loading is expressed as force per unit length of line.
2) Area Distribution :- when a force is distributed over an area. 

The loading is expressed as force per unit area (N/m2 ).

3)Volume Distribution :- when a force is distributed over the 
volume of a body (body force), (N/m3). The body force due to 
the earth`s gravitational attraction (weight) is by far the most 
commonly encountered distributed force. The intensity of 
gravitational force is the specific weight ƍg, where 
ƍ is the density (mass per unit volume, kg/m3) and g is the 
acceleration due to gravity(m/s2). 

Dam



6. CENTROIDS…
Center of Mass Vs. Centre of gravity

Center of Mass
Consider a three-dimensional body of any size and shape, having a mass m. If we 
suspend the body, as shown in Figure below, from any point such as A, the body will 
be in equilibrium under the action of the tension in the cord and the resultant W of 
the gravitational forces acting on all particles of the body. This resultant is clearly 
collinear with the cord. Assume that we mark its position by drilling a hypothetical 
hole of negligible size along its line of action. We repeat the experiment by 
suspending the body from other points such as B and C, and in each instance we 
mark the line of action of the resultant force. For all practical purposes these lines of 
action will be concurrent at a single point G, which is called the center of gravity of 
the body.
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An exact analysis, however, would account for the slightly differing
directions of the gravity forces for the various particles of the 
body, because those forces converge toward the center of 
attraction of the earth.
Also, because the particles are at different distances from the earth, 
the intensity of the force field of the earth is not exactly constant 
over the body. As a result, the lines of action of the gravity-force 
resultants in the experiments just described will not be quite 
concurrent, and therefore no unique center of gravity exists in the 
exact sense. This is of no practical importance as long as we deal 
with bodies whose dimensions are small compared with those of 
the earth. We therefore assume a uniform and parallel force field 
due to the gravitational attraction of the earth, and this assumption 
results in the concept of a unique center of gravity.



6. CENTROIDS…
Center of Mass Vs. Centre of gravity…

To determine mathematically the location of the center of gravity of any 
body, Fig. a, we apply the principle of moments to the parallel system of 
gravitational forces.
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we may express the coordinates 
of the center of gravity G as

With the substitution of W=mg and 
dW=gdm, the expressions for the 
coordinates of the center of gravity 
become

Mubarek Z

Determining the Center of Gravity 

(equ.1)



6. CENTROIDS…
Center of Mass Vs. Centre of gravity…

The equations above may be expressed in vector form with the aid of Fig. 
(b), in which the elemental mass and the mass center G are located by heir 
respective position vectors as 
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The density ƍ of a body is its mass per unit volume. 
Thus, the mass of a differential element of volume dV
becomes dm =ƍ dV.

Mubarek Z

Determining the Center of Gravity… 

(equ.2)

(equ.3)



6. CENTROIDS…
Center of Mass Vs. Centre of gravity…

 As it can be seen from the above equations, the formulas are independent of 
gravitational effects since g no longer appears. They therefore define a unique 
point in the body which is a function solely of the distribution of mass. This point is 
called the center of mass, and clearly it coincides with the center of gravity as long 
as the gravity field is treated as uniform and parallel.

 It is meaningless to speak of the center of gravity of a body which is removed from 
the gravitational field of the earth, since no gravitational forces would act on it. 
The body would, however, still have its unique center of mass. We will usually refer 
henceforth to the center of mass rather than to the center of gravity. Also, the 
center of mass has a special significance in calculating the dynamic response of a 
body to unbalanced forces. 

 In most problems the calculation of the position of the center of mass may be 
simplified by an intelligent choice of reference axes. In general the axes should be 
placed so as to simplify the equations of the boundaries as much as possible. Thus, 
polar coordinates will be useful for bodies with circular boundaries. Another 
important clue may be taken from considerations of symmetry. Whenever there 
exists a line or plane of symmetry in a homogeneous body, a coordinate axis or 
plane should be chosen to coincide with this line or plane. The center of mass will 
always lie on such a line or plane, since the moments due to symmetrically located 
elements will always cancel, and the body may be considered composed of pairs of 
these elements. 
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In summary… 



6. CENTROIDS
Centroids of Lines, Areas, and Volumes

When the density  of a body is uniform throughout, it will be a constant factor in both the 
numerators and denominators of Equ. 3 above and will therefore cancel. The remaining expressions 
define a purely geometrical property of the body, since any reference to its mass properties has 
disappeared. The term centroid is used when the calculation concerns a geometrical shape only. 
When speaking of an actual physical body, we use the term center of mass. If the density is uniform 
throughout the body, the positions of the centroid and center of mass are identical, whereas if the 
density varies, these two points will, in general, not coincide
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(2) Areas

(3) Volumes.

( x,y,z)=the coordinates of the center of mass also 
become the coordinates of the centroid C of the body

(1) Lines

Mubarek Z



6. CENTROIDS…

Choice of Element for Integration
 With mass centers and centroids the concept of the moment principle is simple 

enough; the difficult steps are the choice of the differential element and setting up 
the integrals. The following five guidelines will be useful.
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Centroids of Lines, Areas, and Volumes…

1. Order of Element
Whenever possible, a first-order differential
element should be selected in preference to a 
higher-order element so that only one integration 
will be required to cover the entire figure

Eg. For Figure (a) a first-order horizontal strip of area 
dA = l dy will require only one integration with respect to 
y to cover the entire figure. Where as the second-order 
element dx dy will require two integrations, first with 
respect to x and second with respect to y, to cover the 
figure.
For the solid cone in Figure (b) we choose a first-order 
element in the form of a circular slice of volume 
dV= πr2dy. This choice requires only one integration, and 
thus is preferable to choosing a third-order element 
dV = dx dy dz, which would require three awkward 
integrations. 



6. CENTROIDS…

Choice of Element for Integration…
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Centroids of Lines, Areas, and Volumes…

2. Continuity
Whenever possible, we choose an element which can be integrated in one continuous 
operation to cover the figure. Thus, the horizontal strip in Figure below would be 
preferable to the vertical strip which would require two separate integrals because of 
the discontinuity in the expression for the height of the strip at x = x1.

3. Discarding Higher-Order Terms. 

Higher-order terms may always be dropped 
compared with lower-order terms.
Thus, the vertical strip of area under the curve 
in Figure shown to the right is given by the 
first-order term dA = y dx, and the second-
order triangular area dx dy/2 is discarded. In 
the limit, of course, there is no error 

4. Choice of Coordinates. 
As a general rule, we choose the coordinate system 
which best matches the boundaries of the figure. 
Thus, the boundaries of the area in Fig. (a) are most 
easily described in rectangular coordinates, whereas 
the boundaries of the circular sectors of Fig. (b)  are 
best suited to polar coordinates. 



6. CENTROIDS…

Choice of Element for Integration…
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Centroids of Lines, Areas, and Volumes…

5. Centroidal Coordinate of Element. 
When a first- or second order differential element is chosen, it is essential to use the 
coordinate of the centroid of the element for the moment arm in expressing the 
moment of the differential element. Thus, for the horizontal strip of area in
Fig. (a), the moment of dA about the y-axis is xcdA, where xc is the x-coordinate of the 
centroid C of the element. Note that xc is not the x which describes either boundary of 
the area. In the y-direction for this element the moment arm yc of the centroid of the 
element is the same, in the limit, as the y-coordinates of the two boundaries.

As a second example, consider the solid half-cone of Fig. (b) with the semicircular slice 
of differential thickness as the element of volume. The moment arm for the element in 
the x-direction is the distance xc to the centroid of the face of the element and not the 
x-distance to the boundary of the element. On the other hand, in the z-direction the 
moment arm zc of the centroid of the element is the same as the z-coordinate of the 
element.



6. CENTROIDS…

Choice of Element for Integration…
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Centroids of Lines, Areas, and Volumes…

5. Centroidal Coordinate of Element… 
With the concepts above, the equation (2) &(3) above can be rewritten as

It is essential to recognize that the subscript c serves as a reminder that
the moment arms appearing in the numerators of the integral expressions 
for moments are always the coordinates of the centroids of the particular 
elements chosen.
Keep in mind the equivalence between the moment of the resultant weight 
W and the sum (integral) of the moments of the elemental weights dW, to 
avoid mistakes in setting up the necessary mathematics. Recognition of the 
principle of moments will help in obtaining the correct expression for the 
moment arm xc, yc, or zc of the centroid of the chosen differential element.



6. CENTROIDS…

Example 1
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Centroids of Lines, Areas, and Volumes…

Determine the distance h from the base of a 
triangle of altitude h to the centroid of its area.

Solution
• Rectangular coordinate system is best
• The x-axis is taken to coincide with the base.
• Horizontal strip is best. Thus for this strip, we 

save one integration here by using the first-
order element of area. Recognize that dA must 
be expressed in terms of the integration 
variable y; hence, x = ƒ(y) is required.

B/c dA = x dy . By similar triangles x/(h - y) = b/h. 
x= b(h-y)/h. Therefore dA= [b(h-y)/h]dy

Therefore h=h/3 as it is measured from base and
h=2h/3 as it is measured from apex



6. CENTROIDS…

Examples 2
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Centroids of Lines, Areas, and Volumes…

Locate the centroid of a circular arc as shown in
the figure

Solution: polar coordinates are preferable to 
rectangular coordinates to express the length of a 
circular arc.
Choosing the axis of symmetry as the x-axis makes 
y=0. A differential element of arc has the length 
dL = rdθ expressed in polar coordinates,
and the x-coordinate of the element is r cos θ .
• Applying principle of moment 
• substituting L= 2αr

For a semicircular arc 2α=π, which gives x= 2r/π. 
By symmetry we see immediately that this result 
also applies to the quarter-circular arc when the 
measurement is made as shown



6. CENTROIDS…

Examples 3
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Centroids of Lines, Areas, and Volumes…

Locate the centroid of the area of a circular 
sector with respect to its vertex.

Solution I
The x-axis is chosen as the axis of symmetry, and is 
therefore automatically zero. We may cover the area by 
moving an element in the form of a partial circular ring, 
as shown in the figure, from the center to the outer 
periphery. 
The radius of the ring is r0 and its thickness is dr0, 
so that its area is
dA = 2r0α dr0
The x-coordinate to the centroid of the element 
from example 2 above is xc = r0 sin α / α, where r0
replaces r in the formula. Thus, 



6. CENTROIDS…

Examples 3…
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Centroids of Lines, Areas, and Volumes…

Locate the centroid of the area of a circular 
sector with respect to its vertex.

Solution II
The area may also be covered by swinging a triangle of 
differential area about the vertex and through the total angle 
of the sector. This triangle, shown in the illustration, has an 
area dA=(r/2)*(r dθ), where higher-order terms are neglected. 
From example 2bthe centroid of the triangular element of area 
is two-thirds of its altitude from its vertex, so that the x-
coordinate to the centroid of the element is xc=(2/3)*rcos θ. 
Applying

For a semicircular area 2α=π, which gives x=4r/3π. By 
symmetry we see immediately that this result also applies 
to the quarter-circular area where the measurement is 
made as shown



6. CENTROIDS…

Examples 4
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Centroids of Lines, Areas, and Volumes…

Locate the centroid of the area under the curve 
x = ky3 from x = 0 to x =a.

Solution I.  A vertical element of area dA = y dx 
is chosen as shown in the figure. The x-
coordinate of the centroid is found from 

Substituting y =(x/k)1/3 and k = a/b3 and 
integrating give

Substituting y = b(x/a)1/3 and integrating give

To calculate y, the y-coordinate to the centroid of 
the rectangular strip is yc=y/2.



6. CENTROIDS…
Exercise

1. Specify the x-, y-, and z-
coordinates of the mass center of 
the homogeneous semicylinder
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3) Determine the x- and y-coordinates of 
the centroid of the trapezoidal area.

2. Specify the x-, y-, and z-coordinates of the mass center 
of the quadrant of the homogeneous solid cylinder.

Mubarek Z



6. CENTROIDS
Centroid of Composite Bodies and Figures

When a body or figure can be conveniently divided into several parts whose 
mass centers are easily determined, we use the principle of moments and 
treat each part as a finite element of the whole.
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If Its parts have masses m1, m2, m3 with the respective mass-center 
coordinates x1, x2, x3 in the x-direction.
The moment principle gives

Where X is the x-coordinate of the center of mass of the whole. 
Similar relations hold for the other two coordinate directions.

Analogous relations hold for composite lines, areas, and volumes, where 
the m’s are replaced by L’s, A’s, and V’s, respectively. Note that if a hole 
or cavity is considered one of the component parts of a composite body 
or figure, the corresponding mass represented by the cavity or hole is 
treated as a negative quantity.

Mubarek Z



6. CENTROIDS…
Example 1

1)Locate the centroid of the shaded area
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Solution: The composite area is divided into the 
four elementary shapes shown in the Figure below

Note that the areas of the “holes” (parts 3 and 4) are taken as negative in 
the following table:

Mubarek Z



6. CENTROIDS…
Example 2

Locate the center of mass of the bracket-and-shaft combination. The 
vertical face is made from sheet metal which has a mass of 25 kg/m2. The 
material of the horizontal base has a mass of 40 kg/m2, and the steel shaft 
has a density of 7.83 Mg/m3.
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Solution:
The composite body may be considered to be 
composed of the five elements shown in the lower 
portion of the illustration. The triangular part will be 
taken as a negative mass. For the reference axes 
indicated it is clear by symmetry that the x-coordinate 
of the center of mass is zero. The mass m of each part 
is easily calculated 



6. CENTROIDS…
Example 2…
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• Look at the rectangular coordinate system chosen. 
Then calculate mass and centroid for each parts

Mubarek Z

Solution…
z

x

y

For part 1, m=(25kg/m2)*3.14*0.052/2=0.098 kg
Its centroid are x=y=0, and

Similarly calculated for other parts and summarized in the table 
shown below 



6. CENTROIDS…
Exercise

1)Determine the y-coordinate of 
the centroid of the shaded are
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3) Determine the coordinates of the center of mass of 
the bracket, which is made from a plate of uniform 
thickness.

2) Determine the coordinates of 
the centroid of the shaded area
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7. AREA MOMENT OF INERTIA
Introduction

 When forces are distributed continuously over an area on which they 
act, it is often necessary to calculate the moment of these forces about 
some axis either in or perpendicular to the plane of the area. The 
intensity of the force (pressure or stress) is proportional to the distance 
of the force from the moment axis.

 The elemental force acting on an element of area, then, is proportional 
to distance times differential area, and the elemental moment is 
proportional to distance squared times differential area. We see, 
therefore that the total moment involves an integral that has the form 

∫(distance)2 d(area). This integral is known as the moment of inertia or the 
second moment of the area.
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7. AREA MOMENT OF INERTIA
Introduction

 In Figure (a) above the surface area ABCD is subjected to a distributed pressure p 
whose intensity is proportional to the distance y from the axis AB. The moment 
about AB due to the pressure on the element of area dA is py*dA =ky2*dA. Thus, 
the integral in question appears when the total moment M is evaluated as 

 Figure (b) shown the distribution of stress acting on a transverse section of a 
simple elastic beam bent by equal and opposite couples applied to its ends. At 
any section of the beam, a linear distribution of force intensity or stress ơ , given 
by ơ= ky, is present. The stress is positive (tensile) below the axis O–O and 
negative (compressive) above the axis. We see that the elemental moment about 
the axis O–O is dM =y(dA) =ky2dA. Thus, the same integral appears when the 
total  moment                                is to be evaluated

 In Figure (c) which shows a circular shaft subjected to a twist or torsional 
moment. Within the elastic limit of the material, this moment is resisted at each 
cross section of the shaft by a distribution of tangential or shear stress Ʈ, which is 
proportional to the radial distance r from the center. Thus, Ʈ= kr, and the total 
moment about the central axis is 

Here the integral differs from that in the preceding cases in that the area is normal 
instead of parallel to the moment axis and in that r is a radial coordinate
instead of a rectangular one.
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7. AREA MOMENT OF INERTIA 145
Rectangular and Polar Moments of Inertia

Consider the area A in the x-y plane, Figure. The moments of inertia 
of the element dA about the x- and y-axes are, by definition, dIx =y2

dA and dIy = x2 dA, respectively. The moments of inertia of A about 
the same axes are therefore

These expressions are called 
rectangular moments of inertiaMubarek Z

The integral illustrated in the preceding examples is generally called the 
moment of inertia of the area about the axis in question, a more fitting term 
is the second moment of area, since the first moment ydA is multiplied by the 
moment arm y to obtain the second moment for the element dA. The word 
inertia appears in the terminology by reason of the similarity between the 
mathematical form of the integrals for second moments of areas and those 
for the resultant moments of the so called inertia forces in the case of 
rotating bodies.
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The moment of inertia of dA about the pole O (z-axis) is, by similar
definition, dIz = r2 dA. The moment of inertia of the entire area about O is

This expression is called the polar moment of inertia.

Because x2 + y2 = r2, it is clear that

Radius of Gyration

The radius of gyration, then, is a 
measure of the distribution of the 
area from the axis in questionMubarek Z

Rectangular and Polar Moments of Inertia…



7. AREA MOMENT OF INERTIA
Transfer of Axes( Parallel axis Theorem)

 The moment of inertia of an area about a noncentroidal axis may be 
easily expressed in terms of the moment of inertia about a parallel 
centroidal axis. In Figure below the x0-y0 axes pass through the centroid 
C of the area. Let us now determine the moments of inertia of the area 
about the parallel x-y axes. By definition, the moment of inertia of the 
element dA about the x-axis is
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Expanding and integrating give us

• We see that the first integral is by 
definition the moment of inertia Ix 
about the centroidal x0-axis. The 
second integral is zero, since

y0 is automatically zero with the centroid on 
the x0-axis. The third term is simply Adx

2



7. AREA MOMENT OF INERTIA
Transfer of Axes…
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Thus, the expression for Ix and the similar expression for Iy become

the sum of these two equations gives

These above three equations are the so-called parallel-axis theorems. 
 Two points in particular should be noted. First, the axes between which 

the transfer is made must be parallel, and second, one of the axes must 
pass through the centroid of the area.

 If a transfer is desired between two parallel axes neither of which passes 
through the centroid, it is first necessary to transfer from one axis to the 
parallel centroidal axis and then to transfer from the centroidal axis to 
the second axis.

 The parallel-axis theorems also hold for radii of gyration. With 
substitution of the definition of k into equations above, the transfer 
relation becomes Where k is the radius of gyration about a centroidal 

axis parallel to the axis about which k applies and d is 
the distance between the two axes.



7. AREA MOMENT OF INERTIA
Example 1

Calculate the moments of inertia of the area of a circle about a diametric
axis and about the polar axis through the center. Specify the radii of gyration.
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Solution:-
A differential element of area in the form of a 

circular ring may be used for the calculation of 
the moment of inertia about the polar z-axis 
through O since all elements of the ring are 
equidistant from O. The elemental area is

The polar radius of gyration is

By symmetry Ix = Iy ; using                          then 

The radius of gyration about the diametric axis is



7. AREA MOMENT OF INERTIA
Example 1
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Solution:- Alternatively using the differential element as shown in the 
Figure below. Then 

By definition

The radius of gyration about the diametric x- axis is



7. AREA MOMENT OF INERTIA
Example 3
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Find the moment of inertia about the x-axis of the 
semicircular area.

Solution: The moment of inertia of the semicircular 
area about the x`-axis is one-half of that for a 
complete circle about the same axis. Thus, from the 
results of example 1

We obtain the moment of inertia Ix about the parallel centroidal axis x0
next. Transfer is made through the distance

by the parallel-axis theorem. Hence,

Finally, we transfer from the centroidal x0-axis to the x-axis. Thus,



7. AREA MOMENT OF INERTIA
Example 3
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Determine the moments of inertia of the 
rectangular area about the centroidal x0- and y0-
axes, the centroidal polar axis z0 through C, the 
x-axis, and the polar axis z through O.

Solution:- For the calculation of the moment of 
inertia Ix about the x0-axis, a horizontal strip of area 
dA=b*dy is chosen so that all elements of the strip 
have the same y-coordinate. Thus,

By interchange of symbols, the moment of inertia about the centroidal 
y0-axis is

The centroidal polar moment of inertia is



7. AREA MOMENT OF INERTIA
Example 3…
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Solution: continued…

By the parallel-axis theorem the moment 
of inertia about the x-axis is

We also obtain the polar moment of inertia about O by 
the parallel-axis theorem, which gives us



7. AREA MOMENT OF INERTIA
Example 4
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Determine the moments of inertia of the triangular 
area about its base and about parallel axes through 
its centroid and vertex.

Solution:
A strip of area parallel to the base is selected 
as shown in the figure, and it has the area 

By definition

By the parallel-axis theorem the moment of inertia Ix about an axis through 
the centroid, a distance h/3 above the x-axis, is

A transfer from the centroidal axis to the x`-axis through the vertex gives



7. AREA MOMENT OF INERTIA
Moment of inertia of Composite Areas

It is frequently necessary to calculate the moment of inertia of an
area composed of a number of distinct parts of simple and calculable
geometric shape. Because a moment of inertia is the integral or sum of
the products of distance squared times element of area, it follows that
the moment of inertia of a positive area is always a positive quantity.
The moment of inertia of a composite area about a particular axis is
therefore simply the sum of the moments of inertia of its component
parts about the same axis. It is often convenient to regard a composite
area as being composed of positive and negative parts. We may then
treat the moment of inertia of a negative area as a negative quantity
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For such an area in the x-y plane, for example, and with the notation of Fig. A/4, 
where is the same as and is the same as the tabulation would include

From the sums of the four columns, then, the moments of inertia
for the composite area about the x- and y-axes become
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7. AREA MOMENT OF INERTIA
Moment of inertia of Composite Areas…

Example
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Determine the moments of inertia about the x- and 
y-axes for the shaded area. Also determine the 
radius of gyration about x-axis 

Solution: The given area is subdivided into the 
three subareas shown—a rectangular (1), a 
quarter-circular (2), and a triangular (3) area. 
Two of the subareas are “holes” with negative 
areas. Centroidal axes are shown for areas
(2) and (3), and the locations of centroids and 
are from Table D/3.
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7. AREA MOMENT OF INERTIA
Moment of inertia of Composite Areas…

Example solution ...continued
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7. AREA MOMENT OF INERTIA
Products of Inertia and Rotation of Axes

In certain problems involving unsymmetrical cross sections and in
the calculation of moments of inertia about rotated axes, an expression
dIxy = xy dA occurs, which has the integrated form
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where x and y are the coordinates of the element of area 
dA = dx dy.
The quantity Ixy is called the product of inertia of the area A 
with respect to the x-y axes. Unlike moments of inertia, 
which are always positive for positive areas, the product of 
inertia may be positive, negative, or zero.

The product of inertia is zero whenever either of 
the reference axes is an axis of symmetry, such 
as the x-axis for the area in Figure. Here we see 
that the sum of the terms x*(+y)*dA and
x*(-y)*dA due to symmetrically placed elements 

vanishes. Because the entire area may be 
considered as composed of pairs of such 
elements, it follows that the product of inertia Ixy
for the entire area is zero
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Products of Inertia and Rotation of Axes…
Transfer of Axes Theorem
By definition the product of inertia of the area A in Figure below 
with respect to the x- and y-axes in terms of the coordinates x0, 
y0 to the centroidal axes is

The first integral is by definition the 
product of inertia about the centroidal 
axes, which we write as Ixy. The middle 
two integrals are both zero because the 
first moment of the area about its own 
centroid is necessarily zero. The fourth 
term is merely dxdyA. 
Thus, the transfer-of axis theorem for 
products of inertia becomes
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Products of Inertia and Rotation of Axes…
Rotation of axes
The product of inertia is useful when we need to calculate the moment of 
inertia of an area about inclined axes. This consideration leads directly to 
the important problem of determining the axes about which the moment 
of inertia is a maximum and a minimum.

• The moments of inertia of the area 
about the x`- and y`-axes are 

Expanding and substituting the 
trigonometric identities
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Products of Inertia and Rotation of Axes…
Rotation of axes…
…and the defining relations for Ix, Iy, Ixy give us

In a similar manner we write the product of inertia about the inclined 
axes as

Expanding and substituting the trigonometric identities

and the defining relations for Ix, Iy, Ixy give us

Equation (*)

Equation (**)
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Products of Inertia and Rotation of Axes…
Rotation of axes…

Adding the equations

gives Ix` + Iy` = Ix + Iy = Iz, the polar moment of inertia about O

Denoting this critical angle by α gives

The angle which makes Ix` and Iy` either maximum or minimum
may be determined by setting the derivative of either Ix` or Iy` with 
respect to θ equal to zero. Thus,

Equation (***) gives two values for 2α which differ by μ, since tan 2α =tan (2α+μ). 
Consequently the two solutions for α will differ by μ/2. One value defines the axis of 
maximum moment of inertia, and the other value defines the axis of minimum moment 
of inertia. These two rectangular axes are called the principal axes of inertia.

Equation (***)
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Products of Inertia and Rotation of Axes…
Rotation of axes…
When we substitute Equation(***) for the critical value of 2α in 
Equation(**), we see that the product of inertia is zero for the principal 
axes of inertia. 
Substitution of sin 2α and cos 2α, obtained from Equation(***), for sin 2θ
and cos 2θ in Equation(*) gives the expressions for the principal 
moments of inertia as
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Products of Inertia and Rotation of Axes…
Mohr’s Circle of Inertia
We may represent the relations in Eqs. A/9, A/9a, A/10, and A/11
graphically by a diagram called Mohr’s circle. For given values of Ix, Iy, and Ixy
the corresponding values of and may be determined from the diagram for 
any desired angle θ. 

A horizontal axis for the 
measurement of moments of 
inertia and a vertical axis for 
the measurement of products 
of inertia are first selected, see 
Figure. Next, point A, which 
has the coordinates (Ix, Ixy), 
and point B, which has the 
coordinates (Iy, -Ixy), are 
located.

We now draw a circle with these two 
points as the extremities of a
diameter. The angle from the radius 
OA to the horizontal axis is 2α or twice 
the angle from the x-axis of the area in 
question to the axis of maximum 
moment of inertia.
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Products of Inertia and Rotation of Axes…
Mohr’s Circle of Inertia
We now draw a circle with these two points as the extremities of a diameter. 
The angle from the radius OA to the horizontal axis is 2α or twice the angle 
from the x-axis of the area in question to the axis of maximum moment of 
inertia.
The angle on the diagram and the angle on the area are both measured in the 
same sense as shown. The coordinates of any point C are (I`x, Ix`y`), and those 
of the corresponding point D are (I`y, -Ixy), Also the angle between OA and 
OC is 2θ or twice the angle from the x-axis to the x`-axis. Again we measure 
both angles in the same sense as shown. We may verify from the 
trigonometry of the circle that Equations (*), (**), and (***) agree with the 
statements made.
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Products of Inertia and Rotation of Axes…
Example 1
Determine the product of inertia of the 
rectangular area with centroid at C with 
respect to the x-y axes parallel to its sides.

Solution. 
Since the product of inertia Ixy about the axes x0-y0
is zero by symmetry, the transfer-of-axis theorem 
gives us

In this example both dx and dy are shown positive. We must be careful 
to be consistent with the positive directions of dx and dy as defined, so 
that their proper signs are observed
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Products of Inertia and Rotation of Axes…
Example 2
Determine the orientation of the principal axes 
of inertia through the centroid of the angle 
section and determine the corresponding 
maximum and minimum moments of inertia. 
Solution:-
The location of the centroid C is easily calculated, 
and its position is shown on the diagram. 
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Products of Inertia and Rotation of Axes…
Example 2. Solution…

For each rectangle about its centroidal axes 
parallel to the x-y axes is zero by symmetry. 
Thus, the product of inertia about the x-y axes 
for part I is

Likewise for part II,

Product of inertia 

For the whole angle area
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Products of Inertia and Rotation of Axes…
Example 2. Solution…

The moments of inertia about the x- and y-axes 
for part I are

Moments of Inertia

and the moments of inertia for part II about these 
same axes are

Thus, for the entire section we have
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Products of Inertia and Rotation of Axes…
Example 2. Solution…

Principal axes

We now compute the principal moments of inertia from Equation(*) using 
α for θ and get Imax from Ix` and Imin from Iy`. Thus,

The inclination of the principal axes of inertia can be calculated by 
equation(***)
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Products of Inertia and Rotation of Axes…
Example 2. Solution…

Mohr’s circle
Alternatively to obtain the results for Imax

and Imin, or we could construct the Mohr’s 
circle from the calculated values of Ix, Iy, 
and Ixy. These values are spotted on the 
diagram to locate points A and B, which 
are the extremities of the diameter of the 
circle. The circle is drawn as shown 
The angle 2α and Imax and Imin are obtained 
from the figure, as shown
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Exercise
1. Determine Ix, Iy ,and Ixy for the rectangular plate with three equal 

circular holes. Draw Mohr`s circle



8. FRICTION
Introduction

 In the preceding chapters we have usually assumed that the forces of action 
and reaction between contacting surfaces act normal to the surfaces. This 
assumption characterizes the interaction between smooth surfaces. 

 Although this ideal assumption often involves only a relatively small error, 
there are many problems in which we must consider the ability of 
contacting surfaces to support tangential as well as normal forces.

 Tangential forces generated between contacting surfaces are called friction 
forces and occur to some degree in the interaction between all real 
surfaces. Whenever a tendency exists for one contacting surface to slide 
along another surface, the friction forces developed are always in a 
direction to oppose this tendency.

 In some types of machines and processes we want to minimize the retarding 
effect of friction forces. Examples are bearings of all types, power screws, 
gears, the flow of fluids in pipes, and the propulsion of aircraft and missiles 
through the atmosphere. 

 In other situations we wish to maximize the effects of friction, as in brakes, 
clutches, belt drives, and wedges. Wheeled vehicles depend on friction for 
both starting and stopping, and ordinary walking depends on friction 
between the shoe and the ground.
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8. FRICTION…
Introduction…

 Friction forces are present throughout nature and exist in all machines no 
matter how accurately constructed or carefully lubricated. A machine or 
process in which friction is small enough to be neglected is said to be ideal. 
When friction must be taken into account, the machine or process is termed 
real. 

 In all cases where there is sliding motion between parts,
o the friction forces result in a loss of energy which is dissipated in the 

form of heat. 
o Wear is another effect of friction. 
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8. FRICTION…
Types of Friction

(a) Dry Friction
Dry friction occurs when the unlubricated surfaces of two solids are in contact under a 
condition of sliding or a tendency to slide. A friction force tangent to the surfaces of contact 
occurs both during the interval leading up to impending slippage and while slippage takes 
place. The direction of this friction force always opposes the motion or impending motion. 
This type of friction is also called Coulomb friction. The principles of dry or Coulomb friction 
were developed largely from the experiments of Coulomb in 1781 and from the work of 
Morin from 1831 to 1834. we describe an analytical model sufficient to handle the vast 
majority of problems involving dry friction.
(b) Fluid Friction. 
Fluid friction occurs when adjacent layers in a fluid (liquid or gas) are moving at different 
velocities. This motion causes frictional forces between fluid elements, and these forces 
depend on the relative velocity between layers. When there is no relative velocity, there is no 
fluid friction. Fluid friction depends not only on the velocity gradients within the fluid but 
also on the viscosity of the fluid, which is a measure of its resistance to shearing action 
between fluid layers. Fluid friction is treated in the study of fluid mechanics and will not be 
discussed further in this course.
(c) Internal Friction. 
Internal friction occurs in all solid materials which are subjected to cyclical loading. For 
highly elastic materials the recovery from deformation occurs with very little loss of energy 
due to internal friction. For materials which have low limits of elasticity and which undergo 
appreciable plastic deformation during loading, a considerable amount of internal friction 
may accompany this deformation. The mechanism of internal friction is associated with the 
action of shear deformation, which is discussed in references on materials science. 
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8. FRICTION…
Types of Friction…

(a) Dry Friction
This session describes the effects of dry friction acting on the exterior surfaces of rigid bodies
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A magnified view of the 
irregularities of the mating 
surfaces, Fig.(c), helps us to 
visualize the mechanical 
action of friction.

When the surfaces are in relative motion, the contacts are more nearly 
along the tops of the humps, and the t-components of the R’s are 
smaller than when the surfaces are at rest relative to one another. 
This observation helps to explain the well known fact that the force P 
necessary to maintain motion is generally less than that required to 
start the block when the irregularities are more nearly in mesh. If we 
perform the experiment and record the friction force F as a function 
of P, we obtain the relation shown in Fig. (d). When P is zero, 
equilibrium requires that there be no friction force. As P is increased, 
the friction force must be equal and opposite to P as long as the block 
does not slip. During this period the block is in equilibrium, and all 
forces acting on the block must satisfy the equilibrium equations. 
Finally, we reach a value of P which causes the block to slip and to 
move in the direction of the applied force. At this same time the
friction force decreases slightly and abruptly. It then remains 
essentially constant for a time but then decreases still more as the 
velocity increases.



8. FRICTION…
Types of Friction…

(a) Dry Friction
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Static Friction
The region in Fig. (d) above, up to the point of slippage or impending motion is called 
the range of static friction, and in this range the value of the friction force is determined 
by the equations of equilibrium. This friction force may have any value from zero up to 
and including the maximum value. For a given pair of mating surfaces the experiment 
shows that this maximum value of static friction Fmax is proportional to the normal force 
N. Thus, we may write

where μs is the proportionality constant, called the coefficient of static friction.

The equation shown above describes only the limiting or maximum value of the static 
friction force and not any lesser value. For a condition of static equilibrium when motion 
is not impending, the static friction force is 

Kinetic Friction
After slippage occurs, a condition of kinetic friction accompanies the ensuing 
motion. Kinetic friction force is usually somewhat less than the maximum static 
friction force. The kinetic friction force Fk is also proportional to the normal 
force. Thus,                       ; Where μk is the coefficient of kinetic friction.

It follows that μk is generally less than μs . As the velocity of the block increases, the 
kinetic friction decreases somewhat, and at high velocities, this decrease may be
significant. 



8. FRICTION…
Factors affecting friction

 Contacting surfaces
 Applied forces
 coefficients of friction
Which in turn depend greatly on the exact condition of the surfaces, as well as on the 
relative velocity
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Types of Friction Problems
1) The condition of impending motion is known to exist. Here a body which is in 
equilibrium is on the verge of slipping, and the friction force equals the limiting static 
friction Fmax =μsN. The equations of equilibrium will, of course, also hold.

2) the condition of neither impending motion nor the condition of motion is known 
to exist. To determine the actual friction conditions, we first assume static 
equilibrium and then solve for the friction force F necessary for equilibrium. Three 
outcomes are possible:

3. Relative motion is known to exist between the contacting surfaces, and thus the 
kinetic coefficient of friction clearly applies. 

The friction force F is equal to μkN

Frist assumption is made and then friction force(F) is calculated and compared with 
the maximum value (Fmax). If outcome (c) is happened, then the assumption of 
equilibrium is therefore invalid, and motion occurs. Thus it will be considered as 
type 3. 



8. FRICTION
Example 1

Determine the magnitude and direction of the 
friction force acting on the 100-kg block shown if, 
first, P = 500 N and, second, P = 100 N. The 
coefficient of static friction is 0.20, and the 
coefficient of kinetic friction is 0.17. The forces are 
applied with the block initially at rest
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Solution: There is no way of telling from the statement of the problem whether
the block will remain in equilibrium or whether it will begin to slip following the
application of P. It is therefore necessary that we make an assumption, so we will take 
the friction force to be up the plane, as shown by the solid arrow. From the free-body 
diagram a balance of forces in both x- and y-directions gives

Case I. P = 500 N
Substitution into the first of the two equations gives

The negative sign tells us that if the block is in equilibrium, the friction force 
acting on it is in the direction opposite to that assumed and therefore is down 
the plane. But is the surface capable of developing such force? See next slide



8. FRICTION
Example 1

Solution…Case I P=500 …

180

Mubarek Z

To verify that the surfaces are capable of supporting 134.3 N of friction force. This 
may be done by substituting P = 500 N into the second equation, which gives 

The maximum static friction force which the surfaces can support is then 

Since this force is greater than that required for equilibrium, we conclude that 
the assumption of equilibrium was correct. The answer is, then,

Case II. P = 100 N
Substitution into the two equilibrium equations gives

But the maximum possible static friction force is

It follows that 242 N of friction cannot be supported. Therefore, equilibrium cannot
exist, and we obtain the correct value of the friction force by using the kinetic coefficient 
of friction accompanying the motion down the plane. Hence, the answer is



8. FRICTION
Example 2

Determine the range of values which the 
mass m0 may have so that the 100-kg block 
shown in the figure will neither start moving 
up the plane nor slip down the plane. The 
coefficient of static friction for the contact 
surfaces is 0.30.
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Solution. 
Case I: The maximum value of m0 will be given by 
the requirement for motion impending up the plane. 
The friction force on the block therefore acts down
the plane, as shown in the free-body diagram of the 
block for Case I in the figure.
With the weight mg =100(9.81) = 981 N, the 
equations of equilibrium give

The minimum mass of suspended block ,mo=62.4 kg to pull up the 100 kg block 

since



8. FRICTION
Example 2
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Solution…. 

Case II: The minimum value of m0 is determined 
when motion is impending down the plane. The 
friction force on the block will act up the plane to 
oppose the tendency to move, as shown in the 
free-body diagram for Case II. Equilibrium in the
x-direction requires 

Thus, m0 may have any value from 6.01 to 62.4 kg, and the block will remain at
rest. In both cases equilibrium requires that the resultant of Fmax and N be 
concurrent with the 981-N weight and the tension T.



8. FRICTION

• Wedges
• Screws

Reading Assignment on problems involving
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THE END

Thank You 


